Home
Class 12
MATHS
Let f(n)=sum(k=-n)^(n)(cot^(-1)((1)/(k))...

Let `f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k))` such that `sum_(n=2)^(10)(f(n)+f(n-1))=a pi` then find the value of `(a+1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) = \sum_{k=-n}^{n} \left( \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) \right) \) and then compute the sum \( \sum_{n=2}^{10} (f(n) + f(n-1)) = a \pi \). Finally, we will find the value of \( a + 1 \). ### Step 1: Simplifying \( f(n) \) We start with the function: \[ f(n) = \sum_{k=-n}^{n} \left( \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) \right) \] Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we can rewrite \( \cot^{-1}\left(\frac{1}{k}\right) \) as \( \tan^{-1}(k) \). Thus, we have: \[ f(n) = \sum_{k=-n}^{n} \left( \tan^{-1}(k) - \tan^{-1}(k) \right) = \sum_{k=-n}^{n} 0 = 0 \] However, we need to be careful with \( k = 0 \) since \( \cot^{-1}(0) \) is undefined. Thus, we separate the sum into two parts: \[ f(n) = \sum_{k=-n}^{-1} \left( \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) \right) + \sum_{k=1}^{n} \left( \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) \right) \] ### Step 2: Evaluating Each Part For \( k < 0 \): \[ \cot^{-1}\left(\frac{1}{k}\right) = \tan^{-1}(-k) + \pi \] Thus, \[ \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) = \tan^{-1}(-k) + \pi - \tan^{-1}(k) \] For \( k > 0 \): \[ \cot^{-1}\left(\frac{1}{k}\right) = \tan^{-1}(k) \] Thus, \[ \cot^{-1}\left(\frac{1}{k}\right) - \tan^{-1}(k) = 0 \] ### Step 3: Combining Results Now we combine both parts: \[ f(n) = \sum_{k=-n}^{-1} \left( \tan^{-1}(-k) + \pi - \tan^{-1}(k) \right) \] Notice that \( \tan^{-1}(-k) = -\tan^{-1}(k) \): \[ f(n) = \sum_{k=1}^{n} \left( -\tan^{-1}(k) + \pi - \tan^{-1}(k) \right) = \sum_{k=1}^{n} \left( \pi - 2\tan^{-1}(k) \right) \] This simplifies to: \[ f(n) = n\pi - 2\sum_{k=1}^{n} \tan^{-1}(k) \] ### Step 4: Evaluating the Final Sum Now we need to evaluate: \[ \sum_{n=2}^{10} (f(n) + f(n-1)) \] Substituting \( f(n) = n\pi - 2\sum_{k=1}^{n} \tan^{-1}(k) \) and \( f(n-1) = (n-1)\pi - 2\sum_{k=1}^{n-1} \tan^{-1}(k) \): \[ f(n) + f(n-1) = n\pi - 2\sum_{k=1}^{n} \tan^{-1}(k) + (n-1)\pi - 2\sum_{k=1}^{n-1} \tan^{-1}(k) \] This simplifies to: \[ (2n - 1)\pi - 2\tan^{-1}(n) \] ### Step 5: Final Calculation Now we compute: \[ \sum_{n=2}^{10} \left( (2n - 1)\pi - 2\tan^{-1}(n) \right) \] This results in: \[ \sum_{n=2}^{10} (2n - 1)\pi - 2\sum_{n=2}^{10} \tan^{-1}(n) \] Calculating \( \sum_{n=2}^{10} (2n - 1) = 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 99 \). Thus, we have: \[ \sum_{n=2}^{10} (f(n) + f(n-1)) = 99\pi \] So, \( a = 99 \). ### Step 6: Final Result Finally, we need to find \( a + 1 \): \[ a + 1 = 99 + 1 = 100 \] Therefore, the final answer is: \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If the sum sum_(n=1)^10 sum_(m=1)^10 tan^(-1) (m/n) = k pi , find the value of k

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

If lim_(n to oo) sum_(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+1)))=(120pi)/(lambda) , find the value of lambda .

If lim_(n to oo) sum_(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+1)))=(120pi)/(lambda) , find the value of lambda .

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is