Home
Class 12
MATHS
Let m be the number of solutions of sin...

Let m be the number of solutions of `sin(2x)+cos(2x)+cosx+1=0` in `0 lt x lt (pi)/(2) and n = sin [tan^(-1)(tan((7pi)/(6)))+cos^(-1)(cos((7pi)/(3)))]`, then find the value of `(m^(2)+n^(2)+m+n+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( m \) and \( n \) based on the given equations and then compute \( m^2 + n^2 + m + n + 4 \). ### Step 1: Find \( m \) We start with the equation: \[ \sin(2x) + \cos(2x) + \cos(x) + 1 = 0 \] Using the identities: \[ \sin(2x) = 2\sin(x)\cos(x) \quad \text{and} \quad \cos(2x) = 2\cos^2(x) - 1 \] We can rewrite the equation: \[ 2\sin(x)\cos(x) + (2\cos^2(x) - 1) + \cos(x) + 1 = 0 \] This simplifies to: \[ 2\sin(x)\cos(x) + 2\cos^2(x) + \cos(x) = 0 \] ### Step 2: Factor out \( \cos(x) \) Factoring out \( \cos(x) \): \[ \cos(x)(2\sin(x) + 2\cos(x) + 1) = 0 \] This gives us two cases to solve: 1. \( \cos(x) = 0 \) 2. \( 2\sin(x) + 2\cos(x) + 1 = 0 \) ### Step 3: Solve \( \cos(x) = 0 \) In the interval \( 0 < x < \frac{\pi}{2} \), \( \cos(x) = 0 \) gives: \[ x = \frac{\pi}{2} \] However, this is not included in the interval, so we discard this solution. ### Step 4: Solve \( 2\sin(x) + 2\cos(x) + 1 = 0 \) Rearranging gives: \[ 2\sin(x) + 2\cos(x) = -1 \quad \Rightarrow \quad \sin(x) + \cos(x) = -\frac{1}{2} \] ### Step 5: Square both sides Squaring both sides: \[ (\sin(x) + \cos(x))^2 = \left(-\frac{1}{2}\right)^2 \] Expanding the left side: \[ \sin^2(x) + 2\sin(x)\cos(x) + \cos^2(x) = \frac{1}{4} \] Using \( \sin^2(x) + \cos^2(x) = 1 \): \[ 1 + 2\sin(x)\cos(x) = \frac{1}{4} \] This simplifies to: \[ 2\sin(x)\cos(x) = -\frac{3}{4} \] ### Step 6: Solve for \( \sin(x) \) Using the identity \( \sin(2x) = 2\sin(x)\cos(x) \): \[ \sin(2x) = -\frac{3}{4} \] ### Step 7: Find solutions for \( \sin(2x) = -\frac{3}{4} \) The equation \( \sin(2x) = -\frac{3}{4} \) has solutions in the intervals: \[ 2x = \arcsin\left(-\frac{3}{4}\right) + 2k\pi \quad \text{and} \quad 2x = \pi - \arcsin\left(-\frac{3}{4}\right) + 2k\pi \] Dividing by 2 gives: \[ x = \frac{1}{2}\arcsin\left(-\frac{3}{4}\right) + k\pi \quad \text{and} \quad x = \frac{\pi}{2} - \frac{1}{2}\arcsin\left(-\frac{3}{4}\right) + k\pi \] In the interval \( 0 < x < \frac{\pi}{2} \), we can find the number of valid solutions. ### Step 8: Count solutions After analyzing the intervals, we find that there are **2 valid solutions** for \( m \): \[ m = 2 \] ### Step 9: Find \( n \) Next, we compute: \[ n = \sin\left(\tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) + \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right)\right) \] Calculating \( \tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) \): \[ \tan\left(\frac{7\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus: \[ \tan^{-1}\left(\tan\left(\frac{7\pi}{6}\right)\right) = \frac{7\pi}{6} - \pi = \frac{\pi}{6} \] Calculating \( \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right) \): \[ \frac{7\pi}{3} = 2\pi + \frac{\pi}{3} \quad \Rightarrow \quad \cos^{-1}\left(\cos\left(\frac{7\pi}{3}\right)\right) = \frac{\pi}{3} \] So: \[ n = \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 10: Calculate final expression Now we compute: \[ m^2 + n^2 + m + n + 4 = 2^2 + 1^2 + 2 + 1 + 4 = 4 + 1 + 2 + 1 + 4 = 12 \] Thus, the final answer is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The number of solution of sin^4x-cos^2xsinx+2sin^2x+sinx=0in0lt=xlt=3pi is

Find the number of solutions of sin^(2) x cos^(2)x=1+cos^(2)x+sin^(4) x in the interval [0,pi]

If 0lt=xlt=2pi, then the number of solutions of 3(sinx+cosx)-2(sin^3x+cos^3x)=8 is

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

The number of solution of sinx+sin2x+sin3x=cosx+cos2x+cos3x ,0lt=xlt=2pi, is (a)7 (b)5 (c) 4 (d) 6

If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then