Home
Class 12
MATHS
If the sum sum(n=1)^10 sum(m=1)^10 tan^...

If the sum ` sum_(n=1)^10 sum_(m=1)^10 tan^(-1) (m/n) = k pi`, find the value of k

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation: \[ \sum_{n=1}^{10} \sum_{m=1}^{10} \tan^{-1}\left(\frac{m}{n}\right) \] We can use the property of the inverse tangent function, which states: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] and if \( xy = 1 \): \[ \tan^{-1}(x) + \tan^{-1}(y) = \frac{\pi}{2} \] ### Step 1: Rearranging the Summation We can rewrite the double summation: \[ \sum_{n=1}^{10} \sum_{m=1}^{10} \tan^{-1}\left(\frac{m}{n}\right) = \sum_{n=1}^{10} \left( \tan^{-1}\left(\frac{1}{n}\right) + \tan^{-1}\left(\frac{2}{n}\right) + \ldots + \tan^{-1}\left(\frac{10}{n}\right) \right) \] ### Step 2: Evaluating Inner Summation For a fixed \( n \), we evaluate the inner summation: \[ S_n = \sum_{m=1}^{10} \tan^{-1}\left(\frac{m}{n}\right) \] ### Step 3: Pairing Terms Notice that: \[ \tan^{-1}\left(\frac{m}{n}\right) + \tan^{-1}\left(\frac{n}{m}\right) = \frac{\pi}{2} \quad \text{for } m \neq n \] This means we can pair terms in the summation. For each \( n \), we can pair \( m \) and \( 11-m \) (for \( m = 1, 2, \ldots, 10 \)). ### Step 4: Counting the Pairs For \( n = 1 \) to \( 10 \), there are \( 10 \) terms in the inner summation, and we can form \( 5 \) pairs of \( \tan^{-1}\left(\frac{m}{n}\right) + \tan^{-1}\left(\frac{n}{m}\right) \) for \( m = 1, 2, \ldots, 10 \). ### Step 5: Total Contribution from Pairs Each pair contributes \( \frac{\pi}{2} \), and since there are \( 5 \) pairs for each \( n \): \[ S_n = 5 \cdot \frac{\pi}{2} = \frac{5\pi}{2} \] ### Step 6: Summing Over \( n \) Now, we sum \( S_n \) over \( n \): \[ \sum_{n=1}^{10} S_n = \sum_{n=1}^{10} \frac{5\pi}{2} = 10 \cdot \frac{5\pi}{2} = 25\pi \] ### Step 7: Relating to \( k \) The original problem states: \[ \sum_{n=1}^{10} \sum_{m=1}^{10} \tan^{-1}\left(\frac{m}{n}\right) = k\pi \] From our calculation, we found that the total sum equals \( 25\pi \). Therefore, we can conclude that: \[ k = 25 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{25} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

Find the value of sum_(p=1)^n(sum_(m=p)^n.^nC_m.^m C_p)dot And hence, find the value of lim_(n->oo)1/(3^n)sum_(p=1)^n(sum_(m=p)^n.^n C_m.^m C_p)dot

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Find the sum: sum_(n=1)^(10){(1/2)^(n-1)+(1/5)^(n+1)}dot

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

Find the sum sum_(k=0)^(10).^(20)C_k .

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .