Home
Class 12
MATHS
If the range of the function f(x)= cot^...

If the range of the function `f(x)= cot^(-1)((x^(2))/(x^(2)+1))` is (a, b), find the value of `((b)/(a)+2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cot^{-1}\left(\frac{x^2}{x^2 + 1}\right) \) and subsequently the value of \(\frac{b}{a} + 2\), we can follow these steps: ### Step 1: Define the inner function Let \( g(x) = \frac{x^2}{x^2 + 1} \). ### Step 2: Determine the range of \( g(x) \) To analyze the range of \( g(x) \), we can rewrite it as: \[ g(x) = 1 - \frac{1}{x^2 + 1} \] Here, the denominator \( x^2 + 1 \) is always positive for all real \( x \). ### Step 3: Find the maximum and minimum values of \( g(x) \) - As \( x \) approaches \( 0 \), \( g(0) = \frac{0^2}{0^2 + 1} = 0 \). - As \( x \) approaches \( \infty \), \( g(x) \) approaches \( 1 \). Thus, the range of \( g(x) \) is: \[ [0, 1) \] ### Step 4: Find the range of \( f(x) \) Now we need to find the range of \( f(x) = \cot^{-1}(g(x)) \). Since \( g(x) \) takes values in the interval \([0, 1)\): - When \( g(x) = 0 \), \( f(x) = \cot^{-1}(0) = \frac{\pi}{2} \). - When \( g(x) \) approaches \( 1 \), \( f(x) = \cot^{-1}(1) = \frac{\pi}{4} \). Thus, the range of \( f(x) \) is: \[ \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \] ### Step 5: Identify \( a \) and \( b \) From the range, we have: - \( a = \frac{\pi}{4} \) - \( b = \frac{\pi}{2} \) ### Step 6: Calculate \(\frac{b}{a} + 2\) Now, we compute: \[ \frac{b}{a} = \frac{\frac{\pi}{2}}{\frac{\pi}{4}} = \frac{\pi}{2} \cdot \frac{4}{\pi} = 2 \] Thus, \[ \frac{b}{a} + 2 = 2 + 2 = 4 \] ### Final Answer The value of \(\frac{b}{a} + 2\) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

The range of the function f(x)=(x+1)/(x-2) is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

Find the range of the function f(x)=x^2-2x-4.

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

Find the range of the function f(x)=((1+x+x^2)(1+x^4))/x^3

Range of the function f(x)=(1+x^2)/(x^2) is equal to

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)