Home
Class 12
MATHS
Find the value of lim(n to oo) (tan(sum...

Find the value of `lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3))))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \[ \lim_{n \to \infty} \tan\left(\sum_{r=1}^{n} \tan^{-1}\left(\frac{4}{4r^2+3}\right)\right), \] we will follow these steps: ### Step 1: Rewrite the summation We start by rewriting the term inside the summation: \[ \tan^{-1}\left(\frac{4}{4r^2 + 3}\right) = \tan^{-1}\left(\frac{4}{4(r^2 + \frac{3}{4})}\right) = \tan^{-1}\left(\frac{1}{r^2 + \frac{3}{4}}\right). \] ### Step 2: Use the tangent subtraction formula Using the identity for the tangent of a difference, we can express the summation as: \[ \sum_{r=1}^{n} \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right). \] We can set \( x = r + \frac{1}{2} \) and \( y = r - \frac{1}{2} \) to apply this formula. ### Step 3: Express the summation Thus, we can express the summation as: \[ \sum_{r=1}^{n} \left(\tan^{-1}\left(r + \frac{1}{2}\right) - \tan^{-1}\left(r - \frac{1}{2}\right)\right). \] ### Step 4: Telescoping series This forms a telescoping series, where most terms will cancel out. The remaining terms will be: \[ \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right). \] ### Step 5: Take the tangent Now we need to find: \[ \tan\left(\tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right). \] Using the tangent subtraction formula again, we have: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}. \] ### Step 6: Substitute values Substituting \( a = \tan^{-1}(n + \frac{1}{2}) \) and \( b = \tan^{-1}(\frac{1}{2}) \): \[ \tan\left(\tan^{-1}\left(n + \frac{1}{2}\right)\right) = n + \frac{1}{2}, \] \[ \tan\left(\tan^{-1}\left(\frac{1}{2}\right)\right) = \frac{1}{2}. \] So we have: \[ \tan\left(\tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = \frac{(n + \frac{1}{2}) - \frac{1}{2}}{1 + (n + \frac{1}{2}) \cdot \frac{1}{2}} = \frac{n}{1 + \frac{n}{2} + \frac{1}{4}}. \] ### Step 7: Simplify the expression This simplifies to: \[ \frac{n}{1 + \frac{n}{2} + \frac{1}{4}} = \frac{n}{\frac{4 + 2n + 1}{4}} = \frac{4n}{2n + 5}. \] ### Step 8: Take the limit Now we take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{4n}{2n + 5} = \lim_{n \to \infty} \frac{4}{2 + \frac{5}{n}} = \frac{4}{2} = 2. \] ### Final Answer Thus, the value of the limit is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of tan sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))