Home
Class 12
MATHS
Solve tan^(-1)2x+tan^(-1)3x=pi/4....

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(6)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve the following equations (i) tan^(-1). ( x-1)/(x - 2) = tan ^(-1). ( x+1)/(x + 2) = pi/4 (ii) tan^(-1) 2 xx tan^(-1) 3x = pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3