Home
Class 12
MATHS
The value of lim(x to oo)((1+3x)/(2+3x))...

The value of `lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x))` is

A

0

B

`-1`

C

`e`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} \), we will break it down into two parts: the base and the exponent. ### Step 1: Evaluate the base limit We start with the base of the expression: \[ f_1 = \lim_{x \to \infty} \frac{1 + 3x}{2 + 3x} \] To simplify this, we can factor out \(3x\) from both the numerator and the denominator: \[ f_1 = \lim_{x \to \infty} \frac{3x(1 + \frac{1}{3x})}{3x(1 + \frac{2}{3x})} = \lim_{x \to \infty} \frac{1 + \frac{1}{3x}}{1 + \frac{2}{3x}} \] As \(x\) approaches infinity, \(\frac{1}{3x}\) and \(\frac{2}{3x}\) both approach 0: \[ f_1 = \frac{1 + 0}{1 + 0} = 1 \] ### Step 2: Evaluate the exponent limit Next, we evaluate the exponent: \[ f_2 = \lim_{x \to \infty} \frac{1 - \sqrt{x}}{1 - x} \] To simplify this expression, we can rewrite it: \[ f_2 = \lim_{x \to \infty} \frac{1 - \sqrt{x}}{1 - x} = \lim_{x \to \infty} \frac{-(\sqrt{x} - 1)}{-(x - 1)} = \lim_{x \to \infty} \frac{\sqrt{x} - 1}{x - 1} \] Now, we can factor out \(\sqrt{x}\) from the numerator and \(x\) from the denominator: \[ f_2 = \lim_{x \to \infty} \frac{\sqrt{x}(1 - \frac{1}{\sqrt{x}})}{x(1 - \frac{1}{x})} = \lim_{x \to \infty} \frac{1 - \frac{1}{\sqrt{x}}}{\sqrt{x}(1 - \frac{1}{x})} \] As \(x\) approaches infinity, \(\frac{1}{\sqrt{x}}\) and \(\frac{1}{x}\) both approach 0: \[ f_2 = \lim_{x \to \infty} \frac{1 - 0}{\sqrt{x}(1 - 0)} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0 \] ### Step 3: Combine the results Now we can combine the results of \(f_1\) and \(f_2\): \[ \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} = 1^0 \] Since any non-zero number raised to the power of 0 is equal to 1, we conclude: \[ \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} = 1 \] ### Final Answer: The value of the limit is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

The value of lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr is :

The value of lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr is :

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x) is ....

The value of lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

lim_{x \to 1} (3x)/(x-1)

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. ("lim")(xvecoo)1/(1+nsin^2n x) i s equal to (a)-1 (b) 0 (c) 1 (d) ...

    Text Solution

    |

  2. lim(x->0) (e^x +e^-x +2 cos x -4)/x^4 is equal to

    Text Solution

    |

  3. The value of lim(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

    Text Solution

    |

  4. The value of lim(x->oo)(1+1/x^n)^x,n>0 is

    Text Solution

    |

  5. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  6. Evaluate: ("lim")(n→oo)(n^p sin^2(n !))/(n+1)

    Text Solution

    |

  7. lim(xto oo)(x/(1+x))^(x) is

    Text Solution

    |

  8. If 0 lt alpha lt beta then underset(n to oo)(lim) (beta^(n) + alpha^(n...

    Text Solution

    |

  9. the value of lim(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+..................

    Text Solution

    |

  10. lim(n to oo)sum(r=1)^(n)cot^(-1)(r^(2)+3//4) is (a) 0 (b) tan^(-1)1 (...

    Text Solution

    |

  11. Evaluateunderset(xto pi//4)lim(2-tanx)^(1//1n(tanx))

    Text Solution

    |

  12. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  13. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  14. lim(xto0)((e^(x)-1)/x)^(1//x)

    Text Solution

    |

  15. If [.] denotes the greatest integer function then lim(x->oo)([x]+[2x]...

    Text Solution

    |

  16. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  17. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  18. int cot^6x cosec^2xdx

    Text Solution

    |

  19. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  20. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |