Home
Class 12
MATHS
lim(n to oo)sum(r=1)^(n)cot^(-1)(r^(2)+3...

`lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4)` is (a) 0 (b) `tan^(-1)1` (c) `tan^(-1)2` (d) None of these

A

0

B

`tan^(-1)1`

C

`tan^(-1)2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \sum_{r=1}^{n} \cot^{-1}\left(r^2 + \frac{3}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the cotangent inverse We start by rewriting \( \cot^{-1}(x) \) in terms of \( \tan^{-1}(x) \): \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \] Thus, we can express our limit as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \left( \frac{\pi}{2} - \tan^{-1}\left(r^2 + \frac{3}{4}\right) \right) \] ### Step 2: Separate the sum This can be separated into two parts: \[ \lim_{n \to \infty} \left( \sum_{r=1}^{n} \frac{\pi}{2} - \sum_{r=1}^{n} \tan^{-1}\left(r^2 + \frac{3}{4}\right) \right) \] ### Step 3: Evaluate the first sum The first sum is straightforward: \[ \sum_{r=1}^{n} \frac{\pi}{2} = n \cdot \frac{\pi}{2} \] As \( n \to \infty \), this term approaches \( \infty \). ### Step 4: Analyze the second sum Now, we need to analyze the second sum: \[ \sum_{r=1}^{n} \tan^{-1}\left(r^2 + \frac{3}{4}\right) \] As \( r \) becomes large, \( \tan^{-1}(r^2 + \frac{3}{4}) \) approaches \( \frac{\pi}{2} \). Therefore, for large \( n \): \[ \tan^{-1}\left(r^2 + \frac{3}{4}\right) \approx \frac{\pi}{2} \] Thus, the sum behaves like: \[ \sum_{r=1}^{n} \tan^{-1}\left(r^2 + \frac{3}{4}\right) \approx n \cdot \frac{\pi}{2} \] ### Step 5: Combine the results Now, we can combine the results of both sums: \[ \lim_{n \to \infty} \left( n \cdot \frac{\pi}{2} - n \cdot \frac{\pi}{2} \right) = \lim_{n \to \infty} 0 = 0 \] ### Final Result Thus, the limit evaluates to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

Find sum of sum_(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^(n-1)+1 (d) None of these

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. If 0 lt alpha lt beta then underset(n to oo)(lim) (beta^(n) + alpha^(n...

    Text Solution

    |

  2. the value of lim(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+..................

    Text Solution

    |

  3. lim(n to oo)sum(r=1)^(n)cot^(-1)(r^(2)+3//4) is (a) 0 (b) tan^(-1)1 (...

    Text Solution

    |

  4. Evaluateunderset(xto pi//4)lim(2-tanx)^(1//1n(tanx))

    Text Solution

    |

  5. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  6. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  7. lim(xto0)((e^(x)-1)/x)^(1//x)

    Text Solution

    |

  8. If [.] denotes the greatest integer function then lim(x->oo)([x]+[2x]...

    Text Solution

    |

  9. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  10. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  11. int cot^6x cosec^2xdx

    Text Solution

    |

  12. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  13. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |

  14. lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

    Text Solution

    |

  15. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  16. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  17. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  18. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  19. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  20. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |