Home
Class 12
MATHS
lim(xto0)((e^(x)-1)/x)^(1//x)...

`lim_(xto0)((e^(x)-1)/x)^(1//x)`

A

e

B

`e^(2)`

C

`3sqrt(e)`

D

`sqrt(e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{e^x - 1}{x} \right)^{\frac{1}{x}} \), we will follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{x \to 0} \left( \frac{e^x - 1}{x} \right)^{\frac{1}{x}} \] This limit is in the form of \( f(x)^{g(x)} \) where \( f(x) = \frac{e^x - 1}{x} \) and \( g(x) = \frac{1}{x} \). ### Step 2: Apply the Exponential Limit Property We can rewrite this limit using the property of limits: \[ L = e^{\lim_{x \to 0} g(x) \cdot (f(x) - 1)} \] Thus, we need to find: \[ \lim_{x \to 0} \frac{1}{x} \left( \frac{e^x - 1}{x} - 1 \right) \] ### Step 3: Simplify the Expression We simplify \( \frac{e^x - 1}{x} - 1 \): \[ \frac{e^x - 1 - x}{x} \] Now we need to evaluate: \[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \] ### Step 4: Apply L'Hôpital's Rule Since the limit is in the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: - The derivative of \( e^x - 1 - x \) is \( e^x - 1 \). - The derivative of \( x^2 \) is \( 2x \). Thus, we have: \[ \lim_{x \to 0} \frac{e^x - 1}{2x} \] ### Step 5: Apply L'Hôpital's Rule Again This limit is still in the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again: - The derivative of \( e^x - 1 \) is \( e^x \). - The derivative of \( 2x \) is \( 2 \). Now we have: \[ \lim_{x \to 0} \frac{e^x}{2} = \frac{e^0}{2} = \frac{1}{2} \] ### Step 6: Substitute Back into the Exponential Now substituting back into our limit: \[ L = e^{\frac{1}{2}} = \sqrt{e} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \frac{e^x - 1}{x} \right)^{\frac{1}{x}} = \sqrt{e} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Show that lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1) does not exist.

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Use the formula Lim_(xto 0) (a^(x)-1)/x = log_(e)a " to find " Lim_(xto0) (2^(x)-1)/((1+x)^(1//2)-1)

Evaluate : lim_(xto0) (1+ax)^(1//x)

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Slove lim_(xto0)((1+x)^(1//x)-e)/x

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  2. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  3. lim(xto0)((e^(x)-1)/x)^(1//x)

    Text Solution

    |

  4. If [.] denotes the greatest integer function then lim(x->oo)([x]+[2x]...

    Text Solution

    |

  5. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  6. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  7. int cot^6x cosec^2xdx

    Text Solution

    |

  8. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  9. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |

  10. lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

    Text Solution

    |

  11. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  12. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  13. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  14. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  15. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  16. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  17. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  18. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  19. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  20. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |