Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If `[.]` denotes the greatest integer function then `lim_(x->oo)([x]+[2x]+[3x]+[4x])/x^2` is

A

0

B

x

C

`x/2`

D

`(x^(2))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{x \to \infty} \frac{[x] + [2x] + [3x] + [4x]}{x^2} \] where \([.]\) denotes the greatest integer function. ### Step 1: Rewrite the greatest integer functions We can express each term involving the greatest integer function as follows: \[ [x] = x - \{x\}, \quad [2x] = 2x - \{2x\}, \quad [3x] = 3x - \{3x\}, \quad [4x] = 4x - \{4x\} \] where \(\{y\}\) denotes the fractional part of \(y\). ### Step 2: Substitute into the limit expression Substituting these expressions into our limit gives: \[ [x] + [2x] + [3x] + [4x] = (x - \{x\}) + (2x - \{2x\}) + (3x - \{3x\}) + (4x - \{4x\}) \] This simplifies to: \[ = (x + 2x + 3x + 4x) - (\{x\} + \{2x\} + \{3x\} + \{4x\}) = 10x - (\{x\} + \{2x\} + \{3x\} + \{4x\}) \] ### Step 3: Substitute back into the limit Now, substituting this back into our limit expression gives: \[ \lim_{x \to \infty} \frac{10x - (\{x\} + \{2x\} + \{3x\} + \{4x\})}{x^2} \] ### Step 4: Separate the limit We can separate the limit into two parts: \[ = \lim_{x \to \infty} \left( \frac{10x}{x^2} - \frac{\{x\} + \{2x\} + \{3x\} + \{4x\}}{x^2} \right) \] ### Step 5: Simplify each part The first part simplifies to: \[ \frac{10x}{x^2} = \frac{10}{x} \] As \(x \to \infty\), this approaches \(0\). The second part involves the sum of fractional parts: \[ \frac{\{x\} + \{2x\} + \{3x\} + \{4x\}}{x^2} \] Since each fractional part \(\{kx\}\) (for \(k = 1, 2, 3, 4\)) is bounded between \(0\) and \(1\), we can say: \[ 0 \leq \{x\} + \{2x\} + \{3x\} + \{4x\} < 4 \] Thus, \[ 0 \leq \frac{\{x\} + \{2x\} + \{3x\} + \{4x\}}{x^2} < \frac{4}{x^2} \] As \(x \to \infty\), \(\frac{4}{x^2} \to 0\). ### Step 6: Combine the results Putting it all together, we have: \[ \lim_{x \to \infty} \left( \frac{10}{x} - \frac{\{x\} + \{2x\} + \{3x\} + \{4x\}}{x^2} \right) = 0 - 0 = 0 \] ### Final Result Thus, the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

If [ ] denotes the greatest integer function, lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2) is

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x->0)[nsinx/x] + lim_(x->0)[ntanx/x] equals

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

If [x]^2-5[x]+6=0, where [.] denotes the greatest integer function, then x in [3,4] (b) x in (2,3] (c) x in [2,3] (d) x in [2,4)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  2. lim(xto0)((e^(x)-1)/x)^(1//x)

    Text Solution

    |

  3. If [.] denotes the greatest integer function then lim(x->oo)([x]+[2x]...

    Text Solution

    |

  4. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  5. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  6. int cot^6x cosec^2xdx

    Text Solution

    |

  7. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  8. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |

  9. lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

    Text Solution

    |

  10. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  11. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  12. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  13. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  14. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  15. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  16. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  17. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  18. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  19. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  20. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |