Home
Class 12
MATHS
lim(x->0) ((1+x)^(1/x)-e)/x is equal to...

`lim_(x->0) ((1+x)^(1/x)-e)/x` is equal to

A

e/2

B

e

C

#REF!

D

#REF!

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}, \] we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), we know that \( (1+x)^{\frac{1}{x}} \) approaches \( e \). Therefore, we have: \[ (1+x)^{\frac{1}{x}} \to e \quad \text{and} \quad e \to e. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if the limit is in the form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator. Let \( f(x) = (1+x)^{\frac{1}{x}} - e \) and \( g(x) = x \). We need to find \( f'(x) \) and \( g'(x) \). ### Step 3: Differentiate the numerator To differentiate \( f(x) = (1+x)^{\frac{1}{x}} - e \), we first differentiate \( (1+x)^{\frac{1}{x}} \): Using the logarithmic differentiation: \[ y = (1+x)^{\frac{1}{x}} \implies \ln y = \frac{1}{x} \ln(1+x). \] Differentiating both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)}. \] Thus, \[ \frac{dy}{dx} = y \left( -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \right). \] Substituting back \( y = (1+x)^{\frac{1}{x}} \): \[ f'(x) = (1+x)^{\frac{1}{x}} \left( -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \right). \] ### Step 4: Differentiate the denominator The derivative of \( g(x) = x \) is simply: \[ g'(x) = 1. \] ### Step 5: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} (1+x)^{\frac{1}{x}} \left( -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \right). \] ### Step 6: Evaluate the limit As \( x \to 0 \): - \( (1+x)^{\frac{1}{x}} \to e \) - \( \ln(1+x) \to x \) (using the Taylor expansion) - Therefore, \( -\frac{1}{x^2} \ln(1+x) \to -\frac{x}{x^2} = -\frac{1}{x} \to -\infty \) and \( \frac{1}{x(1+x)} \to \frac{1}{x} \). Thus, we can simplify the limit: \[ \lim_{x \to 0} e \left( -\frac{1}{x^2} \cdot x + \frac{1}{x} \right) = e \left( -\frac{1}{x} + \frac{1}{x} \right) = -\frac{e}{2}. \] ### Final Result The limit evaluates to: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = -\frac{e}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

lim_(x→0) (√(x+1)−1)/x

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. int cot^6x cosec^2xdx

    Text Solution

    |

  2. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  3. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |

  4. lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

    Text Solution

    |

  5. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  6. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  7. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  8. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  9. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  10. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  11. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  12. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  13. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  14. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  15. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  16. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  17. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  18. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  19. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  20. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |