Home
Class 12
MATHS
lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) i...

`lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx))` is equal to

A

`sqrt(2)`

B

`e`

C

`1/(sqrt(e))`

D

`1/e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}} \), we can follow these steps: ### Step 1: Simplify the expression inside the limit We know that as \( x \to 0 \), \( (1+x)^{\frac{1}{x}} \) approaches \( e \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}} = \lim_{x \to 0} \left( \frac{e}{e} \right)^{\frac{1}{\sin x}} = \lim_{x \to 0} 1^{\frac{1}{\sin x}} = 1 \] ### Step 2: Identify the indeterminate form However, we need to analyze the expression more closely since \( \frac{(1+x)^{\frac{1}{x}}}{e} \) approaches 1, leading to the indeterminate form \( 1^{\infty} \) as \( x \to 0 \). ### Step 3: Use the exponential limit form To resolve the indeterminate form \( 1^{\infty} \), we can use the exponential limit: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{\lim_{x \to 0} g(x) \cdot (f(x) - 1)} \] where \( f(x) = \frac{(1+x)^{\frac{1}{x}}}{e} \) and \( g(x) = \frac{1}{\sin x} \). ### Step 4: Calculate \( f(x) - 1 \) We have: \[ f(x) = \frac{(1+x)^{\frac{1}{x}}}{e} \] Using the expansion \( (1+x)^{\frac{1}{x}} \approx e \left( 1 - \frac{x}{2} + O(x^2) \right) \) as \( x \to 0 \), we get: \[ f(x) - 1 \approx \frac{e \left( 1 - \frac{x}{2} \right)}{e} - 1 = -\frac{x}{2} + O(x^2) \] ### Step 5: Substitute into the limit Now, substituting into the limit: \[ \lim_{x \to 0} g(x) \cdot (f(x) - 1) = \lim_{x \to 0} \frac{1}{\sin x} \cdot \left(-\frac{x}{2} + O(x^2)\right) \] As \( x \to 0 \), \( \sin x \approx x \), thus: \[ \lim_{x \to 0} \frac{-\frac{x}{2}}{x} = \lim_{x \to 0} -\frac{1}{2} = -\frac{1}{2} \] ### Step 6: Final result Now we can substitute back into the exponential form: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} \] Thus, the final answer is: \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}} = \frac{1}{\sqrt{e}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

Slove lim_(xto0)((1+x)^(1//x)-e)/x

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

lim _(xto0)(((1+ x )^(2/x))/(e ^(2)))^((4)/(sin x)) is :

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  2. lim(x->0) ((1+x)^(1/x)-e)/x is equal to

    Text Solution

    |

  3. lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

    Text Solution

    |

  4. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  5. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  6. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  7. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  8. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  9. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  10. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  11. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  12. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  13. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  14. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  15. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  16. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  17. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  18. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  19. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  20. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |