Home
Class 12
MATHS
lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^...

`lim_(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(x^(3/4)-a^(1/4)x^(1/2)+a^(1/2)x^(1/4)-a^(3/4))]^(- 1)-sqrt2^(log_4 a)}^8`

A

a

B

`a^(3//4)`

C

`a^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we start with the given expression: \[ \lim_{x \to a} \left[ \left( \frac{a^{1/2} + x^{1/2}}{a^{1/4} - x^{1/4}} \right)^{-1} - \frac{2(a x)^{1/4}}{x^{3/4} - a^{1/4} x^{1/2} + a^{1/2} x^{1/4} - a^{3/4}} \right]^{-1} - \sqrt{2}^{\log_4 a})^8 \] ### Step 1: Rewrite the expression We start by rewriting the limit expression for clarity: \[ \lim_{x \to a} \left[ \frac{a^{1/4} - x^{1/4}}{a^{1/2} + x^{1/2}} - \frac{2(a x)^{1/4}}{x^{3/4} - a^{1/4} x^{1/2} + a^{1/2} x^{1/4} - a^{3/4}} \right]^{-1} - \sqrt{2}^{\log_4 a} \] ### Step 2: Simplify the first term Next, we simplify the first term: \[ \frac{a^{1/4} - x^{1/4}}{a^{1/2} + x^{1/2}} = \frac{(a^{1/4} - x^{1/4})}{(a^{1/2} + x^{1/2})} \] As \(x\) approaches \(a\), both the numerator and denominator approach \(0\), leading us to apply L'Hôpital's Rule or factorization. ### Step 3: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: - The derivative of the numerator \(a^{1/4} - x^{1/4}\) is \(-\frac{1}{4} x^{-3/4}\). - The derivative of the denominator \(a^{1/2} + x^{1/2}\) is \(\frac{1}{2} x^{-1/2}\). Thus, we have: \[ \lim_{x \to a} \frac{-\frac{1}{4} x^{-3/4}}{\frac{1}{2} x^{-1/2}} = \lim_{x \to a} \frac{-\frac{1}{4}}{\frac{1}{2} x^{1/4}} = -\frac{1}{2} \cdot \frac{1}{4^{1/4}} = -\frac{1}{2 \sqrt[4]{4}} = -\frac{1}{4} \] ### Step 4: Simplify the second term Next, we simplify the second term: \[ \frac{2(a x)^{1/4}}{x^{3/4} - a^{1/4} x^{1/2} + a^{1/2} x^{1/4} - a^{3/4}} \] As \(x\) approaches \(a\), we again find that both the numerator and denominator approach \(0\). We can apply L'Hôpital's Rule again or factor. ### Step 5: Evaluate the limit After applying L'Hôpital's Rule or simplifying, we find that the limit approaches \(0\). Thus, we have: \[ \lim_{x \to a} \left[ \text{First term} - \text{Second term} \right] = 0 - 0 = 0 \] ### Step 6: Final expression Now substituting back into the original limit expression, we find: \[ \lim_{x \to a} \left[ 0 - \sqrt{2}^{\log_4 a} \right] = -\sqrt{2}^{\log_4 a} \] ### Step 7: Evaluate \(\sqrt{2}^{\log_4 a}\) Using properties of logarithms: \[ \sqrt{2}^{\log_4 a} = 2^{1/2 \cdot \log_4 a} = 2^{\log_2 a / 4} = a^{1/4} \] ### Step 8: Final result Thus, we have: \[ \lim_{x \to a} \left[ -a^{1/4} \right]^8 = -a^2 \] ### Conclusion The final answer is: \[ -a^2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x to (1)/(2))lim (4x^(2)+8x-5)/(1-4x^(2))=

int1/(x^2(x^4+1)^(3/4))dx

lim_(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(1//3)]^(4)) is

int1/(x^2(x^4+1)^(3/4)) dx

sqrt(2^x(4^x(0. 125)^(1/ x))^(1/3))=4.(2^(1/3))

int_(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

The value of lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

The value of lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. lim(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a....

    Text Solution

    |

  2. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  3. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  4. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  5. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  6. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  7. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  8. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  9. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  10. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  11. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  12. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  13. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  14. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  15. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  16. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  17. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  18. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  19. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  20. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |