Home
Class 12
MATHS
lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is...

`lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1)` is equal to

A

`n/2`

B

`(n(n+1))/2`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 1} \frac{\sum_{r=1}^{n} x^r - n}{x - 1}, \] we can follow these steps: ### Step 1: Rewrite the Summation The summation \(\sum_{r=1}^{n} x^r\) can be expressed as a geometric series. The formula for the sum of a geometric series is: \[ \sum_{r=1}^{n} x^r = x + x^2 + x^3 + \ldots + x^n = \frac{x(1 - x^n)}{1 - x} \quad \text{for } x \neq 1. \] ### Step 2: Substitute the Summation into the Limit Substituting the geometric series into the limit, we have: \[ \lim_{x \to 1} \frac{\frac{x(1 - x^n)}{1 - x} - n}{x - 1}. \] ### Step 3: Simplify the Expression This can be simplified as follows: \[ \lim_{x \to 1} \frac{x(1 - x^n) - n(1 - x)}{(1 - x)(x - 1)} = \lim_{x \to 1} \frac{x(1 - x^n) - n + nx}{(1 - x)(x - 1)}. \] ### Step 4: Evaluate the Limit As \(x\) approaches 1, both the numerator and denominator approach 0, which indicates we can apply L'Hôpital's Rule or simplify further. Calculating the numerator when \(x = 1\): \[ 1(1 - 1^n) - n + n(1) = 0 - n + n = 0. \] ### Step 5: Differentiate the Numerator and Denominator Applying L'Hôpital's Rule: 1. Differentiate the numerator: \[ \frac{d}{dx}[x(1 - x^n) - n + nx] = (1 - x^n) + x(-nx^{n-1}) + n = 1 - nx^n + n. \] 2. Differentiate the denominator: \[ \frac{d}{dx}[(x - 1)(1 - x)] = -2(x - 1). \] ### Step 6: Evaluate the New Limit Now we evaluate the limit again: \[ \lim_{x \to 1} \frac{1 - nx^n + n}{-2(x - 1)}. \] Substituting \(x = 1\): \[ \frac{1 - n + n}{-2(1 - 1)} = \frac{1}{-2(0)} \text{ which is undefined.} \] ### Step 7: Use Taylor Series Expansion Instead of L'Hôpital's Rule, we can use the Taylor series expansion around \(x = 1\): \[ x^r \approx 1 + r(x - 1) + \frac{r(r-1)}{2}(x - 1)^2 + \ldots. \] Summing from \(r=1\) to \(n\): \[ \sum_{r=1}^{n} x^r \approx n + \frac{n(n+1)}{2}(x - 1) + O((x - 1)^2). \] ### Step 8: Substitute Back into the Limit Substituting this back into the limit gives: \[ \lim_{x \to 1} \frac{n + \frac{n(n+1)}{2}(x - 1) - n}{x - 1} = \lim_{x \to 1} \frac{\frac{n(n+1)}{2}(x - 1)}{x - 1} = \frac{n(n+1)}{2}. \] ### Final Result Thus, the limit is: \[ \frac{n(n+1)}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

sum_(r=1)^n r (n-r +1) is equal to :

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If sum of x terms of a series is S_(x)=(1)/((2x+3)(2x+1)) whose r^(th) term is T_(r) . Then, sum_(r=1)^(n) (1)/(T_(r)) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  2. lim(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(...

    Text Solution

    |

  3. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  4. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  5. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  6. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  7. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  8. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  9. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  10. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  11. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  12. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  13. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  14. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  15. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  16. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  17. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  18. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  19. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  20. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |