Home
Class 12
MATHS
The value of lim(xto oo)(2x^(1//2)+3x^...

The value of
`lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))`is

A

`sqrt(2)`

B

`2`

C

`1/(sqrt(3)`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{2x^{1/2} + 3x^{1/3} + 4x^{1/4} + \ldots + nx^{1/n}}{(2x - 3)^{1/2} + (2x - 3)^{1/3} + \ldots + (2x - 3)^{1/n}}, \] we will follow these steps: ### Step 1: Identify the highest power of \( x \) in the numerator and denominator. In the numerator, the term with the highest power is \( 2x^{1/2} \). In the denominator, the highest power is \( (2x)^{1/2} \) since \( (2x - 3)^{1/n} \) behaves like \( (2x)^{1/n} \) as \( x \to \infty \). ### Step 2: Divide both the numerator and denominator by \( x^{1/2} \). This gives us: \[ \lim_{x \to \infty} \frac{2 + 3x^{-1/6} + 4x^{-1/4} + \ldots + nx^{(1/n) - (1/2)}}{(2 - \frac{3}{x})^{1/2} + (2 - \frac{3}{x})^{1/3} + \ldots + (2 - \frac{3}{x})^{1/n}}. \] ### Step 3: Simplify the numerator. As \( x \to \infty \), all terms involving \( x^{-k} \) (where \( k > 0 \)) in the numerator tend to 0. Thus, the numerator approaches: \[ 2. \] ### Step 4: Simplify the denominator. For the denominator, we can approximate \( (2 - \frac{3}{x})^{1/k} \) as \( 2^{1/k} \) since \( \frac{3}{x} \to 0 \) as \( x \to \infty \). Therefore, the denominator becomes: \[ 2^{1/2} + 2^{1/3} + \ldots + 2^{1/n}. \] ### Step 5: Evaluate the limit. Now, we can rewrite the limit as: \[ \lim_{x \to \infty} \frac{2}{2^{1/2} + 2^{1/3} + \ldots + 2^{1/n}}. \] ### Step 6: Find the value of the denominator. The denominator can be approximated as \( n \cdot 2^{1/n} \) for large \( n \) since each term \( 2^{1/k} \) approaches 1 as \( k \) increases. ### Step 7: Final limit calculation. Thus, the limit simplifies to: \[ \frac{2}{2^{1/2} + 2^{1/3} + \ldots + 2^{1/n}} \approx \frac{2}{\text{(sum of terms that approach 1)}}. \] As \( n \to \infty \), the sum approaches \( n \cdot 1 \), leading us to: \[ \lim_{x \to \infty} \frac{2}{\sqrt{2}} = \sqrt{2}. \] ### Final Answer: The value of the limit is \[ \sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

(lim)_(xvecoo)(2. x^(1//2)+3. x^(1//3)+4. x^(1//4)++ndotx^(1//n))/((3x-4)^(1//2)+(3x-4)^(1-3)+(3x-4^)^(1//3)++(3x-4)^(1//n)) (here n in N ,ngeq2 ) is equal to 1 dot2/(sqrt(3)) 2. (sqrt(3))/2 3. 1/2 4. 1/(sqrt(3)) 5. 2

Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

Evaluate: lim_(xrarroo) (5x^(2)+3x+1)/(3x^(2)+2x+4)

lim_(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(1//3)]^(4)) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  2. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  3. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  4. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  5. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  6. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  7. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  8. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  9. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  10. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  11. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  12. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  13. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  14. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  15. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  16. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  17. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  18. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  19. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  20. tan^(-1)(cotx)

    Text Solution

    |