Home
Class 12
MATHS
if |x| <1 then (L t)(n->oo)(1+x)(1+x^...

if `|x| <1 ` then `(L t)_(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=`

A

`1/(x-1)`

B

`1/(1-x)`

C

`1-x`

D

`x-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) \] given that \(|x| < 1\). ### Step 1: Rewrite the expression We start by rewriting the product: \[ P_n = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) \] ### Step 2: Multiply and divide by \(1-x\) Next, we multiply \(P_n\) by \(1-x\) and then divide by \(1-x\): \[ (1-x)P_n = (1-x)(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) \] ### Step 3: Simplify the expression Now we can simplify the left-hand side: \[ (1-x)(1+x) = 1 - x^2 \] Continuing this process, we can see that: \[ (1-x)(1+x^2) = 1 - x^4 \] Following this pattern, we can express the entire product as: \[ (1-x)(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) = 1 - x^{2^{n+1}} \] ### Step 4: Write the final expression Thus, we have: \[ (1-x)P_n = 1 - x^{2^{n+1}} \] ### Step 5: Solve for \(P_n\) Now, we can solve for \(P_n\): \[ P_n = \frac{1 - x^{2^{n+1}}}{1 - x} \] ### Step 6: Take the limit as \(n \to \infty\) Now we need to evaluate the limit as \(n\) approaches infinity: \[ \lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{1 - x^{2^{n+1}}}{1 - x} \] Since \(|x| < 1\), \(x^{2^{n+1}} \to 0\) as \(n \to \infty\). Therefore, we have: \[ \lim_{n \to \infty} P_n = \frac{1 - 0}{1 - x} = \frac{1}{1 - x} \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) = \frac{1}{1 - x} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^2)(1+x^4)(1+x^8).........(1+x^(2n)) , find (dy)/(dx) .

Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4) then :

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

Let P_n=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^(2n))}^2) .Let the term independent of x in the expansion of (x^2+1/x^2+2)^(2n) is equal to lim_(x->-1) Pn . then

The sum of n terms of the series (1)/(1 + x) + (2)/(1 + x^(2)) + (4)/(1 + x^(4)) + ……… is

If n is odd, then Coefficient of x^n in (1+ (x^2)/(2!) +x^4/(4!) + ....oo)^2 =

lim_(x rarr oo)(1+(1)/(2)+(1)/(4)+...+(1)/(2^(x)))=

if x<1 then 1/(1+x)+(2x)/(1+x^2)+(4x^3)/(1+x^4)+..............oo

The value of lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

The value of lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1, show that a(n+2)gea(n+1...

    Text Solution

    |

  2. The value of lim(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n)...

    Text Solution

    |

  3. if |x| <1 then (L t)(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

    Text Solution

    |

  4. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  5. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  6. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  7. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  8. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  9. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  10. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  11. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  12. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  13. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  14. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  15. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  16. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  17. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  18. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  19. tan^(-1)(cotx)

    Text Solution

    |

  20. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |