Home
Class 12
MATHS
The value of lim(x->1) y^3/(x^3-y^2-1) ...

The value of `lim_(x->1) y^3/(x^3-y^2-1)` as `(x, y)-> (1, 0)` along the line `y = x -1` is

A

`1`

B

`oo`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 1} \frac{y^3}{x^3 - y^2 - 1} \] as \((x, y) \to (1, 0)\) along the line \(y = x - 1\). ### Step 1: Substitute \(y\) in terms of \(x\) Since we are given that \(y = x - 1\), we can substitute this into the limit expression. \[ y^3 = (x - 1)^3 \] ### Step 2: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{(x - 1)^3}{x^3 - (x - 1)^2 - 1} \] ### Step 3: Simplify the denominator Next, we simplify the denominator: \[ (x - 1)^2 = x^2 - 2x + 1 \] Thus, \[ x^3 - (x - 1)^2 - 1 = x^3 - (x^2 - 2x + 1) - 1 = x^3 - x^2 + 2x - 1 - 1 = x^3 - x^2 + 2x - 2 \] ### Step 4: Rewrite the limit again Now the limit becomes: \[ \lim_{x \to 1} \frac{(x - 1)^3}{x^3 - x^2 + 2x - 2} \] ### Step 5: Evaluate the limit Now we substitute \(x = 1\): \[ \frac{(1 - 1)^3}{1^3 - 1^2 + 2(1) - 2} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 6: Apply L'Hôpital's Rule Differentiate the numerator and the denominator: - The derivative of the numerator \((x - 1)^3\) is \(3(x - 1)^2\). - The derivative of the denominator \(x^3 - x^2 + 2x - 2\) is \(3x^2 - 2x + 2\). Thus, we have: \[ \lim_{x \to 1} \frac{3(x - 1)^2}{3x^2 - 2x + 2} \] ### Step 7: Substitute \(x = 1\) again Now we substitute \(x = 1\) again: \[ \frac{3(1 - 1)^2}{3(1)^2 - 2(1) + 2} = \frac{0}{3 - 2 + 2} = \frac{0}{3} = 0 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If (x+y, x-y) = (3, 1), find the values of x and y.

The value of {(x-y)^3+(y-z)^3+(z-x)^3}/{9(x-y)(y-z)(z-x)} (1) 0 (2) 1/9 (3) 1/3 (4) 1

if x/y + y/x = -1 ( x, y != 0 ) , then the value of x^3 -y^3 is

If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 is

Find the value of x , if [(3x+y,-y),(2y-x,3)]=[(1, 2),(-5, 3)] .

If (x+1,\ 1)=(3,\ y-2) , find the value of x and y .

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

If (x + 1, y - 2) = (3, -1) , find the values of x and y.

Distance of origin from the line (1+sqrt3)y+(1-sqrt3)x=10 along the line y=sqrt3x+k

The image of the line (x-1)/3=(y-3)/1=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1) (x+3)/3=(y-5)/1=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/5 (3) (x-3)/3=(y+5)/1=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/5

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  2. underset(xto0)lim(log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

    Text Solution

    |

  3. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  4. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  5. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  6. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  7. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  8. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  9. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  10. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  11. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  12. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  13. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  14. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  15. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  16. tan^(-1)(cotx)

    Text Solution

    |

  17. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  18. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  19. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  20. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |