Home
Class 12
MATHS
If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0...

If `f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):}` where `[x]` denotes the greatest integer less than or equal to x, than `lim_(xto0) f(x)` is (a) `(-1)/2` (b) 1 (c) `(pi)/4` (d) Does not exist

A

`(-1)/2`

B

1

C

`(pi)/4`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} \frac{\tan^{-1}(x + [x])}{[x] - 2x} & \text{if } [x] \neq 0 \\ 0 & \text{if } [x] = 0 \end{cases} \] where \([x]\) denotes the greatest integer less than or equal to \(x\). We want to find the limit: \[ \lim_{x \to 0} f(x) \] ### Step 1: Analyze the function around \( x = 0 \) As \( x \) approaches \( 0 \), we need to consider both the left-hand limit (as \( x \to 0^{-} \)) and the right-hand limit (as \( x \to 0^{+} \)). ### Step 2: Calculate the left-hand limit \( \lim_{x \to 0^{-}} f(x) \) For \( x \to 0^{-} \), we have \( [x] = -1 \) (since the greatest integer less than or equal to any negative number close to zero is -1). Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{\tan^{-1}(x - 1)}{-1 - 2x} \] Now, we need to evaluate: \[ \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\tan^{-1}(x - 1)}{-1 - 2x} \] As \( x \to 0^{-} \), \( \tan^{-1}(x - 1) \) approaches \( \tan^{-1}(-1) = -\frac{\pi}{4} \) and \( -1 - 2x \) approaches \(-1\). Thus, we have: \[ \lim_{x \to 0^{-}} f(x) = \frac{-\frac{\pi}{4}}{-1} = \frac{\pi}{4} \] ### Step 3: Calculate the right-hand limit \( \lim_{x \to 0^{+}} f(x) \) For \( x \to 0^{+} \), we have \( [x] = 0 \). Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{\tan^{-1}(x + 0)}{0 - 2x} = \frac{\tan^{-1}(x)}{-2x} \] Now, we need to evaluate: \[ \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\tan^{-1}(x)}{-2x} \] As \( x \to 0^{+} \), \( \tan^{-1}(x) \) approaches \( 0 \). Therefore, we need to apply L'Hôpital's Rule since we have the indeterminate form \( \frac{0}{0} \): \[ \lim_{x \to 0^{+}} \frac{\tan^{-1}(x)}{-2x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\tan^{-1}(x))}{\frac{d}{dx}(-2x)} = \lim_{x \to 0^{+}} \frac{\frac{1}{1+x^2}}{-2} = \frac{1}{-2} = -\frac{1}{2} \] ### Step 4: Compare the left-hand and right-hand limits We have: - Left-hand limit: \( \lim_{x \to 0^{-}} f(x) = \frac{\pi}{4} \) - Right-hand limit: \( \lim_{x \to 0^{+}} f(x) = -\frac{1}{2} \) Since the left-hand limit and the right-hand limit are not equal, we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] ### Final Answer The limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

Examine Lim_(xto 2) [ x] , where [ x] denotes the greatest integar less than or equal to x.

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2

Let [x] denote the greatest integer less than or equal to x , then int_0^(pi/4) sinx d(x-[x])= (A) 1/2 (B) 1-1/sqrt(2) (C) 1 (D) none of these

If f(x)=|x|+[x] , where [x] is the greatest integer less than or equal to x, the value of f(-2.5)+f(1.5) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. The value of lim(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the ...

    Text Solution

    |

  2. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  3. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  4. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  5. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  6. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  7. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  8. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  9. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  10. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  11. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  12. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  13. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  14. tan^(-1)(cotx)

    Text Solution

    |

  15. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  16. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  17. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  18. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  19. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  20. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |