Home
Class 12
MATHS
lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +....

`lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx)` is equal to

A

`|___(n)`

B

`n`

C

`|___(n-1)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \left( \frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx}, \] we will break it down step by step. ### Step 1: Analyze the terms inside the limit As \( x \to \infty \), each term \( k^{1/x} \) (where \( k = 1, 2, \ldots, n \)) approaches 1 because: \[ k^{1/x} = e^{\frac{\log k}{x}} \to e^0 = 1. \] Thus, we can write: \[ 1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x} \to 1 + 1 + 1 + \ldots + 1 = n. \] ### Step 2: Substitute into the limit Substituting this into our limit expression gives: \[ \frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \to \frac{n}{n} = 1. \] ### Step 3: Rewrite the limit Now we have: \[ \lim_{x \to \infty} \left( 1 \right)^{nx} = 1^{nx} = 1. \] ### Step 4: Apply the indeterminate form However, we need to be careful because we have an indeterminate form of \( 1^{\infty} \). To resolve this, we can use the fact that: \[ \lim_{x \to \infty} (f(x))^{g(x)} = e^{\lim_{x \to \infty} g(x) \cdot (f(x) - 1)}, \] where \( f(x) \to 1 \) and \( g(x) \to \infty \). Here, let: \[ f(x) = \frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \quad \text{and} \quad g(x) = nx. \] ### Step 5: Calculate \( f(x) - 1 \) We can express \( f(x) - 1 \): \[ f(x) - 1 = \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x} - n}{n}. \] ### Step 6: Analyze the limit of \( g(x)(f(x) - 1) \) Now we need to compute: \[ \lim_{x \to \infty} nx \cdot \left( \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x} - n}{n} \right). \] Using the approximation \( k^{1/x} \approx 1 + \frac{\log k}{x} \) for large \( x \): \[ 1^{1/x} + 2^{1/x} + \ldots + n^{1/x} \approx n + \frac{\log 1 + \log 2 + \ldots + \log n}{x} = n + \frac{\log(n!)}{x}. \] Thus, \[ f(x) - 1 \approx \frac{\frac{\log(n!)}{x}}{n} = \frac{\log(n!)}{nx}. \] ### Step 7: Substitute back into the limit Now substituting back gives: \[ \lim_{x \to \infty} nx \cdot \frac{\log(n!)}{nx} = \log(n!). \] ### Step 8: Final result Therefore, we have: \[ \lim_{x \to \infty} (f(x))^{g(x)} = e^{\log(n!)} = n!. \] Thus, the final answer is: \[ \boxed{n!}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)(1-x+x.e^(1/n))^n

Lim_(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

lim_(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is equal to

lim_(xrarr oo) ((x+5)/(x-1))^(x) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  2. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  3. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  4. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  5. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  6. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  7. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  8. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  9. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  10. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  11. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  12. tan^(-1)(cotx)

    Text Solution

    |

  13. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  14. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  15. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  16. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  17. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  18. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  19. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  20. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |