Home
Class 12
MATHS
lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3...

`lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3`

A

1

B

-1

C

`1/3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1)}{n^3}, \] we first need to simplify the numerator, which is the sum of the series \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1)\). ### Step 1: Rewrite the Series The term \(k(k+1)\) can be rewritten as \(k^2 + k\). Thus, we can express the series as: \[ \sum_{k=1}^{n} k(k+1) = \sum_{k=1}^{n} (k^2 + k) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k. \] ### Step 2: Use Known Formulas for Sums We can use the formulas for the sums of the first \(n\) natural numbers and the sum of the squares of the first \(n\) natural numbers: - The sum of the first \(n\) natural numbers is given by: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}. \] - The sum of the squares of the first \(n\) natural numbers is given by: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}. \] ### Step 3: Substitute the Formulas Substituting these formulas into our expression, we have: \[ \sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}. \] ### Step 4: Combine the Terms To combine these two fractions, we need a common denominator. The common denominator is 6: \[ \sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{6} = \frac{n(n+1)(2n+1 + 3)}{6} = \frac{n(n+1)(2n + 4)}{6}. \] ### Step 5: Simplify the Expression Now we can simplify the expression: \[ \sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(2(n + 2))}{6} = \frac{n(n+1)(n + 2)}{3}. \] ### Step 6: Substitute Back into the Limit Now substitute this back into the limit: \[ \lim_{n \to \infty} \frac{\frac{n(n+1)(n+2)}{3}}{n^3} = \lim_{n \to \infty} \frac{n(n+1)(n+2)}{3n^3}. \] ### Step 7: Simplify the Limit This simplifies to: \[ \lim_{n \to \infty} \frac{(n+1)(n+2)}{3n^2}. \] ### Step 8: Divide Each Term by \(n\) Dividing each term by \(n\): \[ \lim_{n \to \infty} \frac{(1 + \frac{1}{n})(1 + \frac{2}{n})}{3} = \frac{1 \cdot 1}{3} = \frac{1}{3}. \] ### Final Answer Thus, the limit is: \[ \boxed{\frac{1}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Write the value of (lim)_(n->oo)(1+2+3+....+n)/(n^2)\

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60

the value of lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. The value of ("lim")(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))...

    Text Solution

    |

  2. lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal t...

    Text Solution

    |

  3. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  4. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  5. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  6. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  7. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  8. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  9. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  10. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  11. tan^(-1)(cotx)

    Text Solution

    |

  12. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  13. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  14. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  15. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  16. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  17. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  18. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  19. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  20. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |