Home
Class 12
MATHS
Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(...

Let `P_n=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^(2n))}^2)`.Let the term independent of x in the expansion of `(x^2+1/x^2+2)^(2n)` is equal to `lim_(x->-1) Pn`. then

A

`.^(4n)C_(2n)`

B

`.^(2n)C_(n)`

C

`2.^(4n)C_(2n)`

D

`2.^(4n)C_(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the term independent of \( x \) in the expansion of \( (x^2 + \frac{1}{x^2} + 2)^{2n} \) and show that it is equal to \( \lim_{x \to -1} P_n \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (x^2 + \frac{1}{x^2} + 2)^{2n} \). We can rewrite it as: \[ (x^2 + 2 + \frac{1}{x^2})^{2n} \] 2. **Using Binomial Expansion**: We can apply the binomial theorem to expand \( (a + b + c)^{n} \). Here, we will treat \( x^2 \), \( 2 \), and \( \frac{1}{x^2} \) as \( a \), \( b \), and \( c \) respectively. The general term in the expansion is given by: \[ T = \frac{(2n)!}{r_1! r_2! r_3!} (x^2)^{r_1} (2)^{r_2} \left(\frac{1}{x^2}\right)^{r_3} \] where \( r_1 + r_2 + r_3 = 2n \). 3. **Finding the Independent Term**: The term will be independent of \( x \) if the exponent of \( x \) is zero. The exponent of \( x \) in the term \( T \) is: \[ 2r_1 - 2r_3 \] Setting this equal to zero gives: \[ 2r_1 - 2r_3 = 0 \implies r_1 = r_3 \] 4. **Substituting \( r_3 \)**: Let \( r_1 = r_3 = r \). Then, we have: \[ r + r_2 + r = 2n \implies 2r + r_2 = 2n \implies r_2 = 2n - 2r \] 5. **Finding the Value of \( r \)**: Since \( r_2 \) must be non-negative, we have: \[ 2n - 2r \geq 0 \implies r \leq n \] The maximum value of \( r \) occurs when \( r = n \). 6. **Calculating the Coefficient**: The coefficient of the term independent of \( x \) is: \[ \frac{(2n)!}{r! (2n - 2r)! r!} \] Setting \( r = n \): \[ \text{Coefficient} = \frac{(2n)!}{n! n!} = \binom{2n}{n} \] 7. **Finding \( \lim_{x \to -1} P_n \)**: Now, we need to evaluate \( P_n \): \[ P_n = \frac{(1+x)(1-x^2)(1+x^3)(1-x^4)}{((1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^{2n}))^2} \] We will substitute \( x = -1 \): \[ P_n(-1) = \frac{(1-1)(1-1)(1-1)(1-1)}{((1-1)(1-1)(1-1)(1-1)(1-1))^2} = \frac{0}{0} \] We need to evaluate this limit using L'Hôpital's rule or simplification. 8. **Final Result**: After evaluating the limit, we find that: \[ \lim_{x \to -1} P_n = \binom{2n}{n} \] Thus, the term independent of \( x \) in the expansion of \( (x^2 + \frac{1}{x^2} + 2)^{2n} \) is equal to \( \binom{2n}{n} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If the 5th term is the term independent of x in the expansion of (x^(2//3) + 1/x)^n then n =

Prove that the term independent of x in the expansion of (x+1/x)^(2n) \ is \ (1. 3. 5 ... (2n-1))/(n !). 2^n .

The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +1 + x + x^(2))^(5) , is

the term independent of x in (1+x +2x^2)((3x^2)/2-1/(3x))^9 is

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

The coefficients fo x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) are in the ratio

If |x| lt 1 , then the coefficient of x^n in expansion of (1+x+x^2 + x^3 +…….)^2 is

In the expansion of (x^2+1+1/(x^2))^n ,n in N , number of terms is 2n+1

In the expansion of (x^2+1+1/(x^2))^n ,n in N , number of terms is 2n+1

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), ninN," equals"

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

    Text Solution

    |

  2. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  3. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  4. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  5. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  6. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  7. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  8. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  9. tan^(-1)(cotx)

    Text Solution

    |

  10. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  11. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  12. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  13. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  14. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  15. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  16. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  17. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  18. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  19. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  20. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |