Home
Class 12
MATHS
lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt...

`lim_(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))`

A

`1/3`

B

`-1/3`

C

`-1/5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to -\infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + \ldots - 2x}{\sqrt{x^2 + 1} + \sqrt{4x^2 - 1}}, \] we will break it down step by step. ### Step 1: Simplifying the Numerator The numerator can be expressed as: \[ 1 - 2 + 3 - 4 + 5 - 6 + \ldots - 2x = (1 + 3 + 5 + \ldots + (2x - 1)) - (2 + 4 + 6 + \ldots + 2x). \] The first part, \(1 + 3 + 5 + \ldots + (2x - 1)\), is the sum of the first \(x\) odd numbers, which is given by \(x^2\). The second part, \(2 + 4 + 6 + \ldots + 2x\), is the sum of the first \(x\) even numbers, which is given by \(x(x + 1)\). Thus, the numerator simplifies to: \[ x^2 - x(x + 1) = x^2 - (x^2 + x) = -x. \] ### Step 2: Simplifying the Denominator Now, we simplify the denominator: \[ \sqrt{x^2 + 1} + \sqrt{4x^2 - 1}. \] For large values of \(x\), we can factor out \(x^2\) from both square roots: \[ \sqrt{x^2 + 1} = \sqrt{x^2(1 + \frac{1}{x^2})} = |x|\sqrt{1 + \frac{1}{x^2}}. \] Since \(x \to -\infty\), \(|x| = -x\), so: \[ \sqrt{x^2 + 1} = -x\sqrt{1 + \frac{1}{x^2}}. \] Similarly, for the second term: \[ \sqrt{4x^2 - 1} = \sqrt{4x^2(1 - \frac{1}{4x^2})} = 2|x|\sqrt{1 - \frac{1}{4x^2}} = -2x\sqrt{1 - \frac{1}{4x^2}}. \] Thus, the denominator becomes: \[ -x\sqrt{1 + \frac{1}{x^2}} - 2x\sqrt{1 - \frac{1}{4x^2}}. \] ### Step 3: Combining the Results Now we can rewrite the limit: \[ \lim_{x \to -\infty} \frac{-x}{-x\left(\sqrt{1 + \frac{1}{x^2}} + 2\sqrt{1 - \frac{1}{4x^2}}\right)}. \] The \( -x \) terms cancel out: \[ \lim_{x \to -\infty} \frac{1}{\sqrt{1 + \frac{1}{x^2}} + 2\sqrt{1 - \frac{1}{4x^2}}}. \] ### Step 4: Evaluating the Limit As \(x\) approaches \(-\infty\), the terms \(\frac{1}{x^2}\) and \(\frac{1}{4x^2}\) approach \(0\): \[ \sqrt{1 + \frac{1}{x^2}} \to 1 \quad \text{and} \quad 2\sqrt{1 - \frac{1}{4x^2}} \to 2. \] Thus, we have: \[ \lim_{x \to -\infty} \frac{1}{1 + 2} = \frac{1}{3}. \] ### Final Answer Therefore, the limit is: \[ \boxed{\frac{1}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(x rarr 3)(x-3)/(sqrt(x-2)-sqrt(4-x))

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. lim(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(...

    Text Solution

    |

  2. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  3. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  4. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  5. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  6. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  7. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  8. tan^(-1)(cotx)

    Text Solution

    |

  9. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  10. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  11. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  12. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  13. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  14. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  15. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  16. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  17. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  18. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  19. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  20. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |