Home
Class 12
MATHS
lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)...

`lim_(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4)))` is

A

0

B

`-1/6`

C

`1/6`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x^4) - x^4 \cos(x^4)}{x^4 (e^{2x^4} - 1 - 2x^4)} \), we will use Taylor series expansions for the functions involved. ### Step 1: Expand \(\sin(x^4)\) and \(\cos(x^4)\) The Taylor series expansion for \(\sin(x)\) around \(x=0\) is: \[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \] Thus, substituting \(x^4\) for \(x\): \[ \sin(x^4) = x^4 - \frac{(x^4)^3}{3!} + O(x^{16}) = x^4 - \frac{x^{12}}{6} + O(x^{16}) \] The Taylor series expansion for \(\cos(x)\) around \(x=0\) is: \[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \] Thus, substituting \(x^4\) for \(x\): \[ \cos(x^4) = 1 - \frac{(x^4)^2}{2} + O(x^{16}) = 1 - \frac{x^8}{2} + O(x^{16}) \] ### Step 2: Substitute expansions into the limit Now we substitute these expansions into the limit: \[ \sin(x^4) - x^4 \cos(x^4) = \left(x^4 - \frac{x^{12}}{6} + O(x^{16})\right) - x^4\left(1 - \frac{x^8}{2} + O(x^{16})\right) \] This simplifies to: \[ = x^4 - \frac{x^{12}}{6} - x^4 + \frac{x^{12}}{2} + O(x^{16}) = \left(\frac{1}{2} - \frac{1}{6}\right)x^{12} + O(x^{16}) = \frac{1}{3}x^{12} + O(x^{16}) \] ### Step 3: Expand \(e^{2x^4}\) The Taylor series expansion for \(e^x\) is: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] Thus, substituting \(2x^4\) for \(x\): \[ e^{2x^4} = 1 + 2x^4 + \frac{(2x^4)^2}{2} + O(x^{12}) = 1 + 2x^4 + 2x^8 + O(x^{12}) \] Now, substituting this into the denominator: \[ e^{2x^4} - 1 - 2x^4 = (1 + 2x^4 + 2x^8 + O(x^{12})) - 1 - 2x^4 = 2x^8 + O(x^{12}) \] ### Step 4: Substitute into the limit expression Now we substitute back into the limit: \[ \lim_{x \to 0} \frac{\frac{1}{3}x^{12} + O(x^{16})}{x^4(2x^8 + O(x^{12}))} \] This simplifies to: \[ = \lim_{x \to 0} \frac{\frac{1}{3}x^{12}}{2x^{12} + O(x^{16})} = \lim_{x \to 0} \frac{\frac{1}{3}}{2 + O(x^4)} = \frac{1}{3 \cdot 2} = \frac{1}{6} \] ### Final Answer Thus, the limit is: \[ \frac{1}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(x rarr0)(5^(x^(4))-1-x^(4)log_(e)5)/(x^(4))

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let Pn=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^...

    Text Solution

    |

  2. lim(x rarr -oo)(1-2+3-4+5-6...-2x)/(sqrt(x^2+1)+sqrt(4x^2-1))

    Text Solution

    |

  3. lim(xto0)(sinx^(4)-x^(4)cosx^(4))/(x^(4)(e^(2x^(4))-1-2x^(4))) is

    Text Solution

    |

  4. The value of lim(n to oo)(1.n+2.(n-1)+3.(n-2)+…..+n.1)/(1^(2)+2^(2)+……...

    Text Solution

    |

  5. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  6. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  7. tan^(-1)(cotx)

    Text Solution

    |

  8. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  9. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  10. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  11. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  12. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  13. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  14. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  15. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  16. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  17. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  18. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  19. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  20. If f(x)=-1+|x-2|,0lexle4 g(x)=2-|x|,-1lexle3 Then find fog(x) and ...

    Text Solution

    |