Home
Class 12
MATHS
tan^(-1)(cotx)...

`tan^(-1)(cotx)`

A

`f(x)` is periodic with period `pi`

B

f(x) is discontinuous at `x=(pi)/2, (3pi)/2`

C

f(x) is not differential at `x= pi , 99 pi , 100 pi `

D

`f'(x)=-1`, for `2n pi lt x lt (2n+1)pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \tan^{-1}(\cot x) \), we will follow these steps: ### Step 1: Use the Inverse Trigonometric Identity We know that: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \] Using this identity, we can rewrite \( f(x) \): \[ f(x) = \tan^{-1}(\cot x) = \frac{\pi}{2} - \cot^{-1}(\cot x) \] ### Step 2: Simplify \( \cot^{-1}(\cot x) \) Since \( \cot^{-1}(\cot x) \) is defined as \( x \) when \( x \) is in the range of \( \cot^{-1} \), we have: \[ \cot^{-1}(\cot x) = x \quad \text{(for } x \text{ in the appropriate range)} \] Thus, we can express \( f(x) \) as: \[ f(x) = \frac{\pi}{2} - x \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{\pi}{2} - x\right) = 0 - 1 = -1 \] ### Step 4: Analyze the Options Now we will analyze the options given in the problem: - **Option A**: \( f(x) \) is periodic. Since \( f(x) = \frac{\pi}{2} - x \) is a linear function, it is not periodic. **(Incorrect)** - **Option B**: \( f(x) \) is discontinuous. The function \( f(x) \) is continuous as it is a polynomial function. **(Incorrect)** - **Option C**: \( f(x) \) is not differentiable at \( \pi, 99\pi, 100\pi \). Since \( f'(x) = -1 \) is defined for all \( x \), it is differentiable everywhere. **(Incorrect)** - **Option D**: The correct option. Since \( f'(x) = -1 \) is defined everywhere, this is the correct conclusion. **(Correct)** ### Final Answer The correct option is **D**. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1) (1/2tan2A) + tan^(-1) (cotA) + tan^(-1) (cot^3A) =0

If y=cot^(-1)(cotx), then (dy)/(dx) is

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Evaluate each of the following: tan^(-1)(tan(9pi)/4) (ii) tan^(-1)(tan1) (iii) tan^(-1)(tan2)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

If int ("In"(cotx))/(sinx cos x) dx=(-1)/(k)"In"^(2)(cotx)+C (where C is a constant), then the value of k is :

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. If f(x) = underset(r = 1)overset(n)(sum)a(r)|x|^(r), where a(i) s are ...

    Text Solution

    |

  2. Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-...

    Text Solution

    |

  3. tan^(-1)(cotx)

    Text Solution

    |

  4. Draw the graph of the function: |f(x)|=tanx

    Text Solution

    |

  5. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  6. L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is ...

    Text Solution

    |

  7. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x) (a) has no l...

    Text Solution

    |

  8. The function f(x)={(1-2x+3-4x^(3)+…oo,|x|lt1),(1,x=-1):}

    Text Solution

    |

  9. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  10. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  11. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  12. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  13. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  14. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  15. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  16. If f(x)=-1+|x-2|,0lexle4 g(x)=2-|x|,-1lexle3 Then find fog(x) and ...

    Text Solution

    |

  17. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(...

    Text Solution

    |

  18. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  19. Let f(x) = sqrt(x - 1)+sqrt(x+ 24 - 10sqrt(x-1)), 1 lt x lt 26 be a re...

    Text Solution

    |

  20. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |