Home
Class 12
MATHS
If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 ...

If `f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2),(e^([cotl(x-(pi)/2)//cot m (x- (pi)/2)]), , (pi)/2 lt x lt pi):}`
is a continuous function on `(0,pi)` then the value of p and q are respectively?

A

`m/l , e^(m//l)`

B

`e(m//l), m/l`

C

`ml, e^(ml)`

D

`e^(m//l), ml`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous on the interval \( (0, \pi) \). The function is defined piecewise, and we need to check the continuity at the critical point \( x = \frac{\pi}{2} \). ### Step 1: Analyze the left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) For \( 0 < x < \frac{\pi}{2} \): \[ f(x) = (1 + |\cos x|)^{\frac{p}{|\cos x|}} \] As \( x \) approaches \( \frac{\pi}{2} \), \( |\cos x| \) approaches \( 0 \). This leads to an indeterminate form of \( 1^{\infty} \). To resolve this, we can rewrite the expression using the exponential function: \[ f(x) = e^{\frac{p}{|\cos x|} \ln(1 + |\cos x|)} \] Using the limit property \( \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \), we can express: \[ \ln(1 + |\cos x|) \sim |\cos x| \quad \text{as } x \to \frac{\pi}{2} \] Thus, we have: \[ f(x) \sim e^{\frac{p}{|\cos x|} |\cos x|} = e^{p} \] So, the left-hand limit as \( x \to \frac{\pi}{2}^- \) is: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = e^{p} \] ### Step 2: Evaluate the function at \( x = \frac{\pi}{2} \) For \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = q \] ### Step 3: Analyze the right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) For \( \frac{\pi}{2} < x < \pi \): \[ f(x) = e^{\frac{\cot(l(x - \frac{\pi}{2})}{\cot(m(x - \frac{\pi}{2})}} \] As \( x \to \frac{\pi}{2}^+ \), both \( \cot(l(x - \frac{\pi}{2}) \) and \( \cot(m(x - \frac{\pi}{2}) \) approach \( \infty \), leading to another indeterminate form. Taking the logarithm: \[ \ln(f(x)) = \frac{\cot(l(x - \frac{\pi}{2})}{\cot(m(x - \frac{\pi}{2})} \] Using the limit: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{\tan(m(x - \frac{\pi}{2}))}{\tan(l(x - \frac{\pi}{2}))} = \frac{m}{l} \] Thus, we find: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = e^{\frac{m}{l}} \] ### Step 4: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) = f\left(\frac{\pi}{2}\right) \] This gives us: \[ e^{p} = q = e^{\frac{m}{l}} \] ### Step 5: Solve for \( p \) and \( q \) From the equations: 1. \( q = e^{p} \) 2. \( q = e^{\frac{m}{l}} \) Setting these equal: \[ e^{p} = e^{\frac{m}{l}} \implies p = \frac{m}{l} \] And substituting back: \[ q = e^{\frac{m}{l}} \] ### Final Result Thus, the values of \( p \) and \( q \) are: \[ p = \frac{m}{l}, \quad q = e^{\frac{m}{l}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):} Then its odd extension is

If 0 lt x lt (pi)/(2) and tan x = (a)/(2) , then cos x =

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. The function f(x)=[x]^(2)+[-x^(2)], where [.] denotes the greatest int...

    Text Solution

    |

  2. Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer ...

    Text Solution

    |

  3. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  4. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  5. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  6. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  7. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  8. If f(x)=-1+|x-2|,0lexle4 g(x)=2-|x|,-1lexle3 Then find fog(x) and ...

    Text Solution

    |

  9. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(...

    Text Solution

    |

  10. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  11. Let f(x) = sqrt(x - 1)+sqrt(x+ 24 - 10sqrt(x-1)), 1 lt x lt 26 be a re...

    Text Solution

    |

  12. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  13. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  14. Equation x^(n)-1=0, ngt1, n in N," has roots "1,a(1),a(2),…,a(n-1). ...

    Text Solution

    |

  15. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  16. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  17. underset(xto0)lim[(1-e^(x))(sinx)/(|x|)] is (where [.] represents the ...

    Text Solution

    |

  18. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  19. Let function f be defined as f:R^(+)toR^(+) and function g is defined ...

    Text Solution

    |

  20. If f(x)={(2cos x ,s in2x)/((pi-2x)^2),xlt=pi/2(e^(-cotx)-1)/(8x-4pi),x...

    Text Solution

    |