Home
Class 12
MATHS
Suppose f and g are two functions such t...

Suppose f and g are two functions such that f,g: R `->`R `f(x)=ln(1+sqrt(1+x^2))` and `g(x)=ln(x+sqrt(1+x^2))` then find the value of `xe^(g(x))f(1/x)+g'(x)` at `x=1`

A

`1`

B

`0`

C

`2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( xe^{g(x)}f\left(\frac{1}{x}\right) + g'(x) \) at \( x = 1 \). Let's break this down step by step. ### Step 1: Define the functions We have: \[ f(x) = \ln(1 + \sqrt{1 + x^2}) \] \[ g(x) = \ln(x + \sqrt{1 + x^2}) \] ### Step 2: Find \( g'(x) \) To find \( g'(x) \), we differentiate \( g(x) \): \[ g(x) = \ln(x + \sqrt{1 + x^2}) \] Using the chain rule: \[ g'(x) = \frac{1}{x + \sqrt{1 + x^2}} \cdot \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) \] Simplifying: \[ g'(x) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{\sqrt{1 + x^2} + x}{(x + \sqrt{1 + x^2})\sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}} \] ### Step 3: Find \( g(1) \) and \( g'(1) \) Now, we calculate \( g(1) \): \[ g(1) = \ln(1 + \sqrt{1 + 1^2}) = \ln(1 + \sqrt{2}) = \ln(1 + \sqrt{2}) \] And \( g'(1) \): \[ g'(1) = \frac{1}{\sqrt{1 + 1^2}} = \frac{1}{\sqrt{2}} \] ### Step 4: Find \( f\left(\frac{1}{x}\right) \) Next, we need to find \( f\left(\frac{1}{1}\right) = f(1) \): \[ f(1) = \ln(1 + \sqrt{1 + 1^2}) = \ln(1 + \sqrt{2}) = \ln(1 + \sqrt{2}) \] ### Step 5: Calculate \( xe^{g(x)}f\left(\frac{1}{x}\right) + g'(x) \) at \( x = 1 \) Now we can substitute \( x = 1 \): \[ xe^{g(x)}f\left(\frac{1}{x}\right) + g'(x) = 1 \cdot e^{g(1)} f(1) + g'(1) \] Substituting the values we found: \[ = e^{\ln(1 + \sqrt{2})} \cdot \ln(1 + \sqrt{2}) + \frac{1}{\sqrt{2}} \] Using the property \( e^{\ln(a)} = a \): \[ = (1 + \sqrt{2}) \cdot \ln(1 + \sqrt{2}) + \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the final value is: \[ (1 + \sqrt{2}) \ln(1 + \sqrt{2}) + \frac{1}{\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If int(x-1)/(x^2sqrt(2x^2-2x-1))dx = sqrt(f(x))/g(x) +c then the value of f(x) and g(x) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2...

    Text Solution

    |

  2. Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] ...

    Text Solution

    |

  3. Suppose f and g are two functions such that f,g: R ->R f(x)=ln(1+sqrt(...

    Text Solution

    |

  4. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  5. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  6. If f(x)=-1+|x-2|,0lexle4 g(x)=2-|x|,-1lexle3 Then find fog(x) and ...

    Text Solution

    |

  7. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(...

    Text Solution

    |

  8. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  9. Let f(x) = sqrt(x - 1)+sqrt(x+ 24 - 10sqrt(x-1)), 1 lt x lt 26 be a re...

    Text Solution

    |

  10. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  11. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  12. Equation x^(n)-1=0, ngt1, n in N," has roots "1,a(1),a(2),…,a(n-1). ...

    Text Solution

    |

  13. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  14. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  15. underset(xto0)lim[(1-e^(x))(sinx)/(|x|)] is (where [.] represents the ...

    Text Solution

    |

  16. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  17. Let function f be defined as f:R^(+)toR^(+) and function g is defined ...

    Text Solution

    |

  18. If f(x)={(2cos x ,s in2x)/((pi-2x)^2),xlt=pi/2(e^(-cotx)-1)/(8x-4pi),x...

    Text Solution

    |

  19. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  20. Show that the function f(x)={x^m sin(1/x) , 0 ,x != 0,x=0 is different...

    Text Solution

    |