Home
Class 12
MATHS
Consider f(x)=[[2(sinx-sin^3x)+|sinx-si...

Consider `f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx-sin^3x|]], x != pi/2` for `x in (0,pi), f(pi/2) = 3` where [ ] denotes the greatest integer function then,

A

f is continuous and differentiale at `x=(pi)/2`

B

f is continuous but not differentiable at `x=(pi)/2`

C

f is neither continuous nor differentiable at `x=(pi)/2`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Show that the function f(x)={x^m sin(1/x) , 0 ,x != 0,x=0 is different...

    Text Solution

    |

  2. {:(f(x) = cos x and H(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)...

    Text Solution

    |

  3. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  4. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  5. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  6. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  7. Let f (x) be twice differentialbe function such that f'' (x) gt 0 in [...

    Text Solution

    |

  8. Let f:(-pi/2, pi/2)->R, f(x) ={lim(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(t...

    Text Solution

    |

  9. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  10. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  11. Let f(x) be a function satisfying f(x+y)=f(x) + f(y) and f(x) = x...

    Text Solution

    |

  12. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  13. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  14. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  15. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  16. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  17. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  20. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |