Home
Class 12
MATHS
Let f(x) = max{|x^2 - 2 |x||,|x|} and g(...

Let `f(x) = max{|x^2 - 2 |x||,|x|}` and `g(x) = min{|x^2 - 2|x||, |x|} `then

A

Both f (x) and g(x) are non-differentiable at 5 points

B

f (x) is not differentiable at 5 points and g(x) is not differentiable at 7 points

C

Number of points of non-differentiability for f (x) and g(x) are 7 and 5 respectively

D

Both f (x) and g(x) are non-differentiable at 3 and 5 points respectively

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=max{x^(2)-4,|x-2|,|x-4|} then:

Let f(x) = max. {|x^2 - 2| x ||,| x |} then number of points where f(x) is non derivable, is :

Let f(x)=f_1(x)-2f_2 (x) , where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

Let g(x) = f(f(x)) where f(x) = { 1 + x ; 0 <=x<=2} and f(x) = {3 - x; 2 < x <= 3} then the number of points of discontinuity of g(x) in [0,3] is :

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x) = ||x| -1| , g(x) = |x| + |x-2| , h (x) = max { 1,x,x^(3)} If a, b,c are the no .of points where f(x), g(x) and h(x) , are not differentiable then the value of a+ b + c is …..

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  2. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  3. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  4. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  5. Let f (x) be twice differentialbe function such that f'' (x) gt 0 in [...

    Text Solution

    |

  6. Let f:(-pi/2, pi/2)->R, f(x) ={lim(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(t...

    Text Solution

    |

  7. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  8. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  9. Let f(x) be a function satisfying f(x+y)=f(x) + f(y) and f(x) = x...

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  11. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  12. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  13. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  14. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  15. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  18. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  19. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  20. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |