Home
Class 12
MATHS
Let f:(-pi/2, pi/2)->R, f(x) ={lim(n->oo...

Let `f:(-pi/2, pi/2)->R`, `f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N`; `1` if `x=0` which of the following holds good? (a) `f(-(pi^(-))/4)=f((pi^(+))/4)` (b) `f(-(pi^(-))/4)=f(-(pi^(+))/4)` (c) `f((pi^(-))/4)=f((pi^(+))/4)` (d) `f(0^(+))=f(0)=f(0^(-))`

A

`f(-(pi^(-))/4)=f((pi^(+))/4)`

B

`f(-(pi^(-))/4)=f(-(pi^(+))/4)`

C

`f((pi^(-))/4)=f((pi^(+))/4)`

D

`f(0^(+))=f(0)=f(0^(-))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined as: \[ f(x) = \lim_{n \to \infty} \frac{(\tan x)^{2n} + x^2}{\sin^2 x + (\tan x)^{2n}} \] for \( x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and \( f(0) = 1 \). ### Step 1: Analyze the limit for \( x = 0 \) When \( x = 0 \): \[ f(0) = 1 \] This is given in the problem statement. ### Step 2: Analyze the limit for \( x = \frac{\pi}{4} \) Next, we evaluate \( f(\frac{\pi}{4}) \): \[ f\left(\frac{\pi}{4}\right) = \lim_{n \to \infty} \frac{(\tan(\frac{\pi}{4}))^{2n} + \left(\frac{\pi}{4}\right)^2}{\sin^2(\frac{\pi}{4}) + (\tan(\frac{\pi}{4}))^{2n}} \] Since \( \tan(\frac{\pi}{4}) = 1 \) and \( \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} \): \[ f\left(\frac{\pi}{4}\right) = \lim_{n \to \infty} \frac{1^{2n} + \left(\frac{\pi}{4}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2 + 1^{2n}} = \lim_{n \to \infty} \frac{1 + \frac{\pi^2}{16}}{\frac{1}{2} + 1} \] Calculating the denominator: \[ \frac{1}{2} + 1 = \frac{3}{2} \] Thus, we have: \[ f\left(\frac{\pi}{4}\right) = \frac{1 + \frac{\pi^2}{16}}{\frac{3}{2}} = \frac{2(1 + \frac{\pi^2}{16})}{3} = \frac{2 + \frac{\pi^2}{8}}{3} \] ### Step 3: Analyze the limit for \( x = -\frac{\pi}{4} \) Now, we evaluate \( f(-\frac{\pi}{4}) \): \[ f\left(-\frac{\pi}{4}\right) = \lim_{n \to \infty} \frac{(\tan(-\frac{\pi}{4}))^{2n} + \left(-\frac{\pi}{4}\right)^2}{\sin^2(-\frac{\pi}{4}) + (\tan(-\frac{\pi}{4}))^{2n}} \] Since \( \tan(-\frac{\pi}{4}) = -1 \) and \( \sin(-\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} \): \[ f\left(-\frac{\pi}{4}\right) = \lim_{n \to \infty} \frac{(-1)^{2n} + \left(\frac{\pi}{4}\right)^2}{\left(-\frac{1}{\sqrt{2}}\right)^2 + (-1)^{2n}} = \lim_{n \to \infty} \frac{1 + \frac{\pi^2}{16}}{\frac{1}{2} + 1} \] This is the same as \( f(\frac{\pi}{4}) \): \[ f\left(-\frac{\pi}{4}\right) = \frac{2 + \frac{\pi^2}{8}}{3} \] ### Step 4: Conclusion for options 1. \( f(-\frac{\pi}{4}) = f(\frac{\pi}{4}) \) holds true. 2. \( f(0^+) = f(0) = f(0^-) = 1 \) also holds true. Thus, the correct options are: - (a) \( f(-\frac{\pi}{4}) = f(\frac{\pi}{4}) \) - (d) \( f(0^+) = f(0) = f(0^-) \)
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->pi/4)(f(x)-f(pi/4))/(x-pi/4) , where f(x)=sin2x

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

let f(x)=e^(cos^(-1)sin(x + pi/3)) then f((8pi)/9) and f((-7pi)/4)

If f(x)=tanx and A,B,C are the anlges of /_\ABC, then |(f(A), f(pi/4) f(pi/4)), (f(pi/4), f(B) f(pi/4)), (f(pi/4), f(pi/4) f(C))| = (A) 0 (B) -2 (C) 2 (D) 1

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3pi^(2))/(4) , then lim_(xto -pi^+) (f(x))/(sin(sinx)) is equal to

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=0 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  2. Let f (x) be twice differentialbe function such that f'' (x) gt 0 in [...

    Text Solution

    |

  3. Let f:(-pi/2, pi/2)->R, f(x) ={lim(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(t...

    Text Solution

    |

  4. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  5. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  6. Let f(x) be a function satisfying f(x+y)=f(x) + f(y) and f(x) = x...

    Text Solution

    |

  7. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  8. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  9. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  10. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  11. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  12. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  15. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  16. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  17. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  18. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  19. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  20. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |