Home
Class 12
MATHS
Let f(x) be a function satisfying f(x+y)...

Let f(x) be a function satisfying `f(x+y)=f(x)f(y)` for all `x,y in R` and f(x)=1+xg(x) where `underset(x to 0)lim g(x)=1`. Then f'(x) is equal to

A

`f(x)`

B

`[f(x)]^(2)`

C

`g(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's start with the given conditions and derive the required result. ### Step 1: Understanding the Functional Equation We are given that \( f(x+y) = f(x)f(y) \) for all \( x, y \in \mathbb{R} \). This is a well-known functional equation that suggests that \( f(x) \) could be an exponential function. ### Step 2: Finding the Form of \( f(x) \) We also have the condition that \( f(x) = 1 + xg(x) \) where \( \lim_{x \to 0} g(x) = 1 \). ### Step 3: Evaluating \( f(0) \) To find \( f(0) \), we can set \( x = 0 \) in the functional equation: \[ f(0 + 0) = f(0)f(0) \implies f(0) = f(0)^2 \] This implies \( f(0) = 0 \) or \( f(0) = 1 \). Since \( f(x) = 1 + xg(x) \) and \( \lim_{x \to 0} g(x) = 1 \), we have: \[ f(0) = 1 + 0 \cdot g(0) = 1 \] Thus, \( f(0) = 1 \). ### Step 4: Finding the Derivative \( f'(x) \) We want to find \( f'(x) \). By the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Using the functional equation, we can express \( f(x+h) \): \[ f(x+h) = f(x)f(h) \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x)(f(h) - 1)}{h} \] ### Step 5: Evaluating \( f(h) \) From the expression for \( f(x) \): \[ f(h) = 1 + hg(h) \] Substituting this into our limit gives: \[ f'(x) = \lim_{h \to 0} \frac{f(x)(1 + hg(h) - 1)}{h} = \lim_{h \to 0} \frac{f(x)hg(h)}{h} = f(x) \lim_{h \to 0} g(h) \] ### Step 6: Applying the Limit Since we know that \( \lim_{h \to 0} g(h) = 1 \): \[ f'(x) = f(x) \cdot 1 = f(x) \] ### Conclusion Thus, we conclude that: \[ f'(x) = f(x) \] ### Final Answer The derivative \( f'(x) \) is equal to \( f(x) \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in R "If "f(x)=1+xg(x),log_(e)2, "where "lim_(x to 0) g(x)=1. "Then, f'(x)=

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

Let f:R to R be a function satisfying f(x+y)=f(x)+f(y)"for all "x,y in R "If "f(x)=x^(3)g(x)"for all "x,yin R , where g(x) is continuous, then f'(x) is equal to

Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For all "x,y in R , where g(x) is continuous. Then,

Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If f'(0)=2 then f(x) is equal to

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x+y)=f(x)f(y) for all x, y epsilon R and f(x)=1+x phi (x) l n 2 ...

    Text Solution

    |

  2. Let f(x) be a function satisfying f(x+y)=f(x) + f(y) and f(x) = x...

    Text Solution

    |

  3. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  4. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  5. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  6. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  7. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  8. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  11. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  12. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  13. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  14. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  15. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  16. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |

  17. If f(x) = (1)/(x^(2) - 17 x + 66), then f((2)/(x - 2)) is discontinuou...

    Text Solution

    |

  18. if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upt...

    Text Solution

    |

  19. The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2...

    Text Solution

    |

  20. If underset(xrarr0)(lim)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is...

    Text Solution

    |