Home
Class 12
MATHS
If y=f(x) and x=g(y) are inverse of each...

If `y=f(x)` and `x=g(y)` are inverse of each other. Then `g'(y)` and `g"(y)` in terms of derivative of f(y) is

A.`-(f"(x))/([f'(x)]^(3))`
B. `(f"(x))/([f'(x)]^(2))`
C. `-(f"(x))/([f'(x)]^(2))`
D. None of these

A

`-(f"(x))/([f'(x)]^(3))`

B

`(f"(x))/([f'(x)]^(2))`

C

`-(f"(x))/([f'(x)]^(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'(y) \) and \( g''(y) \) in terms of the derivatives of \( f(x) \), given that \( y = f(x) \) and \( x = g(y) \) are inverse functions. ### Step 1: Differentiate \( y = f(x) \) We start by differentiating \( y = f(x) \) with respect to \( x \): \[ \frac{dy}{dx} = f'(x) \] **Hint:** Remember that the derivative of a function gives the slope of the tangent line at any point on the curve. ### Step 2: Differentiate \( x = g(y) \) Next, we differentiate \( x = g(y) \) with respect to \( y \): \[ \frac{dx}{dy} = g'(y) \] **Hint:** This derivative represents how \( x \) changes with respect to \( y \). ### Step 3: Relate \( g'(y) \) and \( f'(x) \) Since \( y = f(x) \) and \( x = g(y) \) are inverses, we know that: \[ \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \implies g'(y) = \frac{1}{f'(x)} \] **Hint:** The relationship between the derivatives of inverse functions is key to solving this problem. ### Step 4: Differentiate \( g'(y) \) to find \( g''(y) \) Now, we differentiate \( g'(y) \) with respect to \( y \): \[ g''(y) = \frac{d}{dy}\left(\frac{1}{f'(x)}\right) \] Using the chain rule, we get: \[ g''(y) = -\frac{f''(x)}{(f'(x))^2} \cdot \frac{dx}{dy} \] Since \( \frac{dx}{dy} = g'(y) = \frac{1}{f'(x)} \), we substitute this into the equation: \[ g''(y) = -\frac{f''(x)}{(f'(x))^2} \cdot \frac{1}{f'(x)} = -\frac{f''(x)}{(f'(x))^3} \] **Hint:** When differentiating a quotient, remember to apply the quotient rule or the chain rule appropriately. ### Conclusion Thus, we have: \[ g''(y) = -\frac{f''(x)}{(f'(x))^3} \] ### Final Answer The correct option is: **A.** \(-\frac{f''(x)}{(f'(x))^3}\)
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y=f(x)andx=g(y) are inverse functions of each other, then

If y=f(x)=x^3+x^5 and g is the inverse of f find g^(prime)(2)

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Graph of y=f(x) and y=g(x) is given in the following figure. If h(x)= f(g(x)) , then find the value of h'(2) .

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= 2f(x)dotf(y) (b) f(x)dotf(y) (f(x))/(f(y)) (d) none of these

If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne 0, then

If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne 0, then

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  2. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  3. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  4. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  5. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  6. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  9. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  10. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  11. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  12. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  13. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  14. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |

  15. If f(x) = (1)/(x^(2) - 17 x + 66), then f((2)/(x - 2)) is discontinuou...

    Text Solution

    |

  16. if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upt...

    Text Solution

    |

  17. The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2...

    Text Solution

    |

  18. If underset(xrarr0)(lim)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is...

    Text Solution

    |

  19. The value of lim(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

    Text Solution

    |

  20. A single formula that gives f(x) for all x ge0 where f(x)={(3+x, 0lexl...

    Text Solution

    |