Home
Class 12
MATHS
Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1...

Given `g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1)` and `u(x)=1/x+cos(1/(x^(2)))`
Let `f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x))`
If `lim_(xto0)f(x)=2`, then the value of `lamda` is

A

10

B

5

C

2

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the function \( f(x) \) as \( x \) approaches 0 and find the value of \( \lambda \) such that this limit equals 2. ### Step-by-Step Solution: 1. **Define the Functions**: We have: \[ g(x) = \frac{1}{x}, \quad h(x) = x^2 + 2x + (\lambda + 1), \quad u(x) = \frac{1}{x} + \cos\left(\frac{1}{x^2}\right) \] 2. **Write the Expression for \( f(x) \)**: The function \( f(x) \) is given by: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n+1} g(x) + h(x)}{x^{2n} + 3x u(x)} \] 3. **Substituting \( g(x) \) and \( h(x) \)**: Substitute \( g(x) \) and \( h(x) \) into the expression: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n+1} \cdot \frac{1}{x} + (x^2 + 2x + \lambda + 1)}{x^{2n} + 3x \left(\frac{1}{x} + \cos\left(\frac{1}{x^2}\right)\right)} \] Simplifying this gives: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n} + x^2 + 2x + \lambda + 1}{x^{2n} + 3 + 3x \cos\left(\frac{1}{x^2}\right)} \] 4. **Evaluate the Limit as \( n \to \infty \)**: As \( n \to \infty \), \( x^{2n} \) dominates the numerator and denominator if \( x \neq 0 \): \[ f(x) = \lim_{n \to \infty} \frac{x^{2n}}{x^{2n}} = 1 \quad \text{(if \( x \neq 0 \))} \] However, we need to analyze the behavior as \( x \to 0 \). 5. **Taking the Limit as \( x \to 0 \)**: As \( x \to 0 \): - The term \( x^{2n} \) approaches 0. - The numerator simplifies to \( 0 + 0 + 0 + \lambda + 1 = \lambda + 1 \). - The denominator simplifies to \( 0 + 3 + 0 = 3 \). Thus, we have: \[ f(0) = \frac{\lambda + 1}{3} \] 6. **Setting the Limit Equal to 2**: We are given that: \[ \lim_{x \to 0} f(x) = 2 \] Therefore: \[ \frac{\lambda + 1}{3} = 2 \] 7. **Solving for \( \lambda \)**: Multiply both sides by 3: \[ \lambda + 1 = 6 \] Subtract 1 from both sides: \[ \lambda = 5 \] ### Conclusion: The value of \( \lambda \) is \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) The value of lim_(xtooo)f(x) is

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim+(xto2)f(x)=I , then [I] (where [.] denotes the greatest integer function), is equal to :

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  2. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  3. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  4. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  5. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  6. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  9. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  10. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  11. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  12. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  13. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  14. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |

  15. If f(x) = (1)/(x^(2) - 17 x + 66), then f((2)/(x - 2)) is discontinuou...

    Text Solution

    |

  16. if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upt...

    Text Solution

    |

  17. The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2...

    Text Solution

    |

  18. If underset(xrarr0)(lim)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is...

    Text Solution

    |

  19. The value of lim(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

    Text Solution

    |

  20. A single formula that gives f(x) for all x ge0 where f(x)={(3+x, 0lexl...

    Text Solution

    |