Home
Class 12
MATHS
Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1...

Given `g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1)` and `u(x)=1/x+cos(1/(x^(2)))`
Let `f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x))`
If `lim+(xto2)f(x)=I`, then [I] (where [.] denotes the greatest integer function), is equal to :

A

0

B

1

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given functions and the limit we need to evaluate. ### Step 1: Write down the functions We have: - \( g(x) = \frac{1}{x} \) - \( h(x) = x^2 + 2x + (\lambda + 1) \) - \( u(x) = \frac{1}{x} + \cos\left(\frac{1}{x^2}\right) \) ### Step 2: Write the expression for \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n+1} g(x) + h(x)}{x^{2n} + 3x u(x)} \] ### Step 3: Substitute \( g(x) \) and \( u(x) \) into \( f(x) \) Substituting \( g(x) \) and \( u(x) \): \[ f(x) = \lim_{n \to \infty} \frac{x^{2n+1} \cdot \frac{1}{x} + h(x)}{x^{2n} + 3x \left(\frac{1}{x} + \cos\left(\frac{1}{x^2}\right)\right)} \] This simplifies to: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n} + h(x)}{x^{2n} + 3 + 3x \cos\left(\frac{1}{x^2}\right)} \] ### Step 4: Simplify \( h(x) \) Substituting \( h(x) \): \[ h(x) = x^2 + 2x + (\lambda + 1) \] So, \[ f(x) = \lim_{n \to \infty} \frac{x^{2n} + x^2 + 2x + (\lambda + 1)}{x^{2n} + 3 + 3x \cos\left(\frac{1}{x^2}\right)} \] ### Step 5: Analyze the limit as \( n \to \infty \) As \( n \to \infty \), the terms \( x^{2n} \) dominate both the numerator and the denominator: \[ f(x) = \lim_{n \to \infty} \frac{1 + \frac{x^2 + 2x + (\lambda + 1)}{x^{2n}}}{1 + \frac{3 + 3x \cos\left(\frac{1}{x^2}\right)}{x^{2n}}} \] As \( n \to \infty \), the fractions involving \( x^{2n} \) approach 0: \[ f(x) = \frac{1 + 0}{1 + 0} = 1 \] ### Step 6: Evaluate \( \lim_{x \to 2} f(x) \) Since \( f(x) = 1 \) for all \( x \) in the limit as \( n \to \infty \): \[ \lim_{x \to 2} f(x) = 1 \] ### Step 7: Find the greatest integer function value Let \( I = \lim_{x \to 2} f(x) = 1 \). Therefore, the greatest integer function \( [I] \) is: \[ [I] = [1] = 1 \] ### Final Answer The value of \( [I] \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) The value of lim_(xtooo)f(x) is

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim_(xto0)f(x)=2 , then the value of lamda is

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  2. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  3. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  4. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  5. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  6. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  9. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  10. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  11. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  12. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  13. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  14. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |

  15. If f(x) = (1)/(x^(2) - 17 x + 66), then f((2)/(x - 2)) is discontinuou...

    Text Solution

    |

  16. if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upt...

    Text Solution

    |

  17. The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2...

    Text Solution

    |

  18. If underset(xrarr0)(lim)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is...

    Text Solution

    |

  19. The value of lim(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

    Text Solution

    |

  20. A single formula that gives f(x) for all x ge0 where f(x)={(3+x, 0lexl...

    Text Solution

    |