Home
Class 12
MATHS
The point of discontinuity of f(x)=unde...

The point of discontinuity of `f(x)=underset(n to oo)lim ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z` is

A

(a) ` at x = npi +-(pi)/6 f(x) is discontinuous`

B

`npi +-(pi)/3p n epsilonI`

C

`n pi +-(pi)/6`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of discontinuity of the function \[ f(x) = \lim_{n \to \infty} \frac{(2 \sin x)^{2n}}{3^n - (2 \cos x)^{2n}}, \] we need to analyze the behavior of the function as \( n \) approaches infinity. ### Step 1: Identify the condition for discontinuity The function \( f(x) \) will be discontinuous if the denominator approaches zero. Therefore, we need to set the denominator equal to zero: \[ 3^n - (2 \cos x)^{2n} = 0. \] ### Step 2: Rearranging the equation From the equation above, we can rearrange it to: \[ 3^n = (2 \cos x)^{2n}. \] ### Step 3: Expressing the equation in terms of powers We can rewrite the right-hand side: \[ 3^n = 2^{2n} (\cos x)^{2n}. \] ### Step 4: Taking the ratio of the bases Now we can express this as: \[ \left(\frac{3}{4 \cos^2 x}\right)^n = 1. \] ### Step 5: Analyzing the limit For this equation to hold true as \( n \to \infty \), the base must equal 1, which gives us: \[ \frac{3}{4 \cos^2 x} = 1. \] ### Step 6: Solving for \( \cos^2 x \) From the equation above, we can solve for \( \cos^2 x \): \[ 4 \cos^2 x = 3 \implies \cos^2 x = \frac{3}{4}. \] ### Step 7: Finding \( \cos x \) Taking the square root gives us: \[ \cos x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}. \] ### Step 8: Finding the general solution for \( x \) The general solutions for \( \cos x = \frac{\sqrt{3}}{2} \) and \( \cos x = -\frac{\sqrt{3}}{2} \) are: 1. For \( \cos x = \frac{\sqrt{3}}{2} \): \[ x = 2n\pi \pm \frac{\pi}{6}, \quad n \in \mathbb{Z}. \] 2. For \( \cos x = -\frac{\sqrt{3}}{2} \): \[ x = (2n + 1)\pi \pm \frac{\pi}{6}, \quad n \in \mathbb{Z}. \] ### Conclusion Thus, the points of discontinuity of the function \( f(x) \) are given by: \[ x = n\pi \pm \frac{\pi}{6}, \quad n \in \mathbb{Z}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Discuss the continuity of the function f(x) = underset(n rarr oo)(lim) (log (2 + x)-x^(2n) sin x)/(1+x^(2n))"at x" = 1

Let f(x)= lim_(n->oo)(sinx)^(2n)

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

Discuss the continuity of f(x)=("lim")_(n->oo)cos^(2n)xdot

Lim_(n to oo) (-1)^(n)sin(pisqrt(n^(2)+n)), n epsilon N is

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(n->oo)(sin (pix/2))^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  2. "If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and under...

    Text Solution

    |

  3. Let f(x) be real valued differentiable function not identically zero s...

    Text Solution

    |

  4. lim(x->oo)(1+a^2)^xsinb/((1+a^2)^x), where a!=0 (a) Both f (x) and g(x...

    Text Solution

    |

  5. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  6. Two functions f and g have first and second derivates at x=0 and satis...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. "If "y=tan^(-1)""(1)/(1+x+x^(2))+tan^(-1)""(1)/(x^(2)+3x+3)+tan^(-1)""...

    Text Solution

    |

  9. If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) i...

    Text Solution

    |

  10. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  11. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  12. Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) ...

    Text Solution

    |

  13. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  14. Evaluate: ("lim")(nvecpi/2)(sinx-(sinx)^(sinx))/(-sinx+(log)esinx)

    Text Solution

    |

  15. If f(x) = (1)/(x^(2) - 17 x + 66), then f((2)/(x - 2)) is discontinuou...

    Text Solution

    |

  16. if f(x) =x^(2) + (x^(2))/(1+x^(2)) + (x^(2))/((1+x^(2))^(2)) +……" upt...

    Text Solution

    |

  17. The point of discontinuity of f(x)=underset(n to oo)lim ((2 sin x)^(2...

    Text Solution

    |

  18. If underset(xrarr0)(lim)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is...

    Text Solution

    |

  19. The value of lim(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

    Text Solution

    |

  20. A single formula that gives f(x) for all x ge0 where f(x)={(3+x, 0lexl...

    Text Solution

    |