Home
Class 12
MATHS
If f(x) is derivable at x=5, f'(5)=4, th...

If `f(x)` is derivable at `x=5, f'(5)=4`, then evaluate `lim_(hto0)(f(5+h^(3))-f(5-h^(3)))/(2h^(3)`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

Evaluate lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].

Evaluate lim_(hto0)(log_(10)(1+h))/h

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)

If f(x) is derivable at x=2 such that f(2)=2 and f'(2)=4 , then the value of lim_(h rarr0)(1)/(h^(2))(ln f(2+h^(2))-ln f(2-h^(2))) is equal to

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).

If f'(3)=2 , then lim_(h->0)(f(3+h^2)-f(3-h^2))/(2h^2) is

The value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

If f ' (3)=1 , then Lt_(h to0)(f(3+h)-f(3-h))/(h) is

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).