Home
Class 12
MATHS
Let f(x) be a continuous function define...

Let f(x) be a continuous function defined for `0lexle3`, if f(x) takes irrational values for all x and `f(1)=sqrt(2)`, then evaluate `f(1.5).f(2.5)`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function defined for 1 <= x <= 3. If f(x) takes rational values for all x and f(2)=10 then the value of f(1.5) is :

Let f(x) be a continuous function defined for 1 <= x <= 3. If f(x) takes rational values for all x and f(2)=10 then the value of f(1.5) is :

Let f(x) be a continuous function defined for AA x in R , if f(x) take rational values AA x in R and f(2) = 198 , then f(2^(2)) = ……

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

Let f(x) be real valued continuous function on R defined as f(x)=x^(2)e^(-|x|) then f(x) is increasing in

Let f(x) be a continuous function for all x in R and f'(0) =1 then g(x) = f(|x|)-sqrt((1-cos 2x)/(2)), at x=0,

Let f be a continuous function satisfying f '(l n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as

If f(x) is continuous on [0,2] , differentiable in (0,2) ,f(0)=2, f(2)=8 and f'(x) le 3 for all x in (0,2) , then find the value of f(1) .