Home
Class 12
MATHS
If f(x)={{:(a+(sin[x])/x,xgt0),(2,x=0),(...

If f(x)=`{{:(a+(sin[x])/x,xgt0),(2,x=0),(b+[(sinx-x)/(x^(3))],","xgt0):}` (where [.] denotes the greatest integer function).
If f(x) is continuous at x=0 then a+b is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). This means that the left-hand limit (LHL) as \( x \) approaches 0 from the left must equal the right-hand limit (RHL) as \( x \) approaches 0 from the right, and both must equal \( f(0) \). Given: \[ f(x) = \begin{cases} a + \frac{\sin(\lfloor x \rfloor)}{x} & \text{if } x > 0 \\ 2 & \text{if } x = 0 \\ b + \left\lfloor \frac{\sin x - x}{x^3} \right\rfloor & \text{if } x < 0 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit (LHL) For \( x < 0 \): \[ LHL = \lim_{x \to 0^-} \left( b + \left\lfloor \frac{\sin x - x}{x^3} \right\rfloor \right) \] Using the Taylor series expansion for \( \sin x \): \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] Thus, \[ \sin x - x = -\frac{x^3}{6} + O(x^5) \] Substituting this into our limit: \[ \frac{\sin x - x}{x^3} = \frac{-\frac{x^3}{6} + O(x^5)}{x^3} = -\frac{1}{6} + O(x^2) \] As \( x \to 0 \), the \( O(x^2) \) term approaches 0, so: \[ \lim_{x \to 0^-} \frac{\sin x - x}{x^3} = -\frac{1}{6} \] Thus, the greatest integer function gives: \[ \left\lfloor -\frac{1}{6} \right\rfloor = -1 \] So, we have: \[ LHL = b - 1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) For \( x > 0 \): \[ RHL = \lim_{x \to 0^+} \left( a + \frac{\sin(\lfloor x \rfloor)}{x} \right) \] Since \( \lfloor x \rfloor = 0 \) as \( x \to 0^+ \): \[ RHL = \lim_{x \to 0^+} \left( a + \frac{\sin(0)}{x} \right) = a + 0 = a \] ### Step 3: Set the Limits Equal to Each Other For continuity at \( x = 0 \): \[ LHL = RHL = f(0) \] Thus: \[ b - 1 = a \] And since \( f(0) = 2 \): \[ b - 1 = 2 \implies b = 3 \] ### Step 4: Substitute \( b \) into the Equation From \( b - 1 = a \): \[ 3 - 1 = a \implies a = 2 \] ### Step 5: Calculate \( a + b \) Now, we can find \( a + b \): \[ a + b = 1 + 3 = 4 \] ### Final Answer Thus, the value of \( a + b \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)={alpha+sin[x]/x , x > 0 and 2 ,x=0 and beta+[(sin x-x)/x^3] ,x < 0 (whlenotes the greatest integer function) if f(x) is continuous at x = 0 . then beta is equal to

Let f(x)={((a|x^(2)-x-2|)/(2+x-x^(2)), , xlt2),(b, , x=2),((x-[x])/(x-2), , xgt2):} ([.]denotes thet greatest integer functional). If f(x) is continuous at x=2 then:

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .