Home
Class 12
MATHS
If lim(xtooo)x-x^(2) ln(1+1/x)=l then ev...

If `lim_(xtooo)x-x^(2) ln(1+1/x)=l` then evaluate `(25)^(l)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \infty} \left( x - x^2 \ln\left(1 + \frac{1}{x}\right) \right) = l \] Then, we will find \( 25^l \). ### Step-by-step Solution: 1. **Expand \( \ln(1 + \frac{1}{x}) \)**: We use the Taylor series expansion for \( \ln(1 + x) \): \[ \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] For \( \ln(1 + \frac{1}{x}) \), we substitute \( x \) with \( \frac{1}{x} \): \[ \ln\left(1 + \frac{1}{x}\right) = \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} - \frac{1}{4x^4} + \ldots \] 2. **Substitute the expansion into the limit**: Now, we substitute this expansion into our limit: \[ x - x^2 \left( \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} - \frac{1}{4x^4} + \ldots \right) \] This simplifies to: \[ x - \left( x^2 \cdot \frac{1}{x} - x^2 \cdot \frac{1}{2x^2} + x^2 \cdot \frac{1}{3x^3} - x^2 \cdot \frac{1}{4x^4} + \ldots \right) \] Which becomes: \[ x - \left( x - \frac{1}{2} + \frac{1}{3x} - \frac{1}{4x^2} + \ldots \right) \] 3. **Simplify the expression**: Now we simplify: \[ x - x + \frac{1}{2} - \frac{1}{3x} + \frac{1}{4x^2} - \ldots \] The \( x \) terms cancel out, leaving: \[ \frac{1}{2} - \frac{1}{3x} + \frac{1}{4x^2} - \ldots \] 4. **Take the limit as \( x \to \infty \)**: As \( x \to \infty \), the terms \( \frac{1}{3x} \), \( \frac{1}{4x^2} \), etc., approach 0. Thus: \[ \lim_{x \to \infty} \left( \frac{1}{2} - \frac{1}{3x} + \frac{1}{4x^2} - \ldots \right) = \frac{1}{2} \] Therefore, we have: \[ l = \frac{1}{2} \] 5. **Evaluate \( 25^l \)**: Now we need to evaluate \( 25^l \): \[ 25^l = 25^{\frac{1}{2}} = \sqrt{25} = 5 \] ### Final Answer: Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

If L=("lim")_(xvecoo){x-x^2(log)_e(1+1/x)}, then the value of 8L is_____

Evaluate lim_(xtooo) x^((1)/(x)).

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.

If lim_(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

Evaluate lim_(xtooo)(1+2/x)^(x)

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals