Home
Class 12
MATHS
If an open box with square base is to be...

If an open box with square base is to be made of a given quantitiy of card board of area `c^(2)`, then show that the maximum volume of the box is `c^(3)/(6sqrt(3))` cu units.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

An open box with a square base is to be made out of a given quantity of card board of area c^2 square units. Show that the maximum volume of the box is (c^3)/(6sqrt(3)) cubic units.

An open box with a square base is to be made out of a given quantity of card board of area c^2 square units. Show that the maximum volume of the box is (c^3)/(6sqrt(3)) cubic units.

OR An open box with a square base is to be made out of a given quantity of cardboard of area \ c^2 square units. Show that the maximum volume of the box is (c^3)/(6\ sqrt(3)) cubic units.

A rectangular box with an open top is constructed from cardboard to have a square base of area x^(2) and height h. If the volume of this box is 50 cubic units, how many square units of cardboard in terms of x, are needed to build this box ?

A pyramid with vertex at point P has a regular hexagonal base A B C D E F , Position vector of points A and B are hat i and hat i + 2 hat j The centre of base has the position vector hat i+ hat j+sqrt(3) hat kdot Altitude drawn from P on the base meets the diagonal A D at point Gdot find the all possible position vectors of Gdot It is given that the volume of the pyramid is 6sqrt(3) cubic units and A P is 5 units.

A sheet of area 40m^2 is used to make an open tank with square base. Find the dimensions of the base such that the volume of this tank is maximum.

If the surface area of an open cylinder is 100 cm^(2) , prove that its maximum volume will be 1000/(3sqrt(3pi) cm^(3) .

A 3-inch-tall rectangular box with a square base is constructed to hold a circular pie that has a diameter of 8 inches. Both are shown below. What is the volume, in cubic inches, of the smallest such box that can hold this pie?

A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?

A box is constructed by cutting 3-inche square from the corner of a square sheet of cardboard, as shown in the accompanying diagram, and then folding the sides up. If the volume of the box is 75 inches, find the number of square inches in the area of the original sheet of cardboard?

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-JEE Advanced (Archive)
  1. If an open box with square base is to be made of a given quantitiy of ...

    Text Solution

    |

  2. Let f,g : [-1,2] to be continuous functions which are twice different...

    Text Solution

    |

  3. Let f:Rrarr(0,oo)andg:RrarrR be twice differentiable functions such th...

    Text Solution

    |

  4. If f:R is a differentiable fucntion such that f(x) gt 2f(x) for all x...

    Text Solution

    |

  5. The point(s) on the curve y^3+\ 3x^2=12 y where the tangent is ver...

    Text Solution

    |

  6. On the ellipse 4x^2+9y^2=1, the points at which the tangents are paral...

    Text Solution

    |

  7. If the line a x+b y+c=0 is a normal to the curve x y=1, then a >0,b >...

    Text Solution

    |

  8. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |

  9. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  10. The length of the longest interval in which the function 3sinx-4sin^3x...

    Text Solution

    |

  11. If f(x)=xe^(x(1-x)), then f'(x) is

    Text Solution

    |

  12. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  13. If f(x)=x/(sinx) \ a n d \ g(x)=x/(tanx),w h e r e \ 0ltxlt=1, then in...

    Text Solution

    |

  14. The function f(x)=(log (pi+x))/(log (e+x))," is "

    Text Solution

    |

  15. Let fa n dg be increasing and decreasing functions, respectively, from...

    Text Solution

    |

  16. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  17. Let h(x)=f(x)-(f(x))^2+(f(x))^3 for every real number xdot Then (a) h ...

    Text Solution

    |

  18. Let f(X) be a polynomila of degree four having extreme values at x =1 ...

    Text Solution

    |

  19. The number of points in (-oo,oo), for which x^2-xsinx-cosx=0, is

    Text Solution

    |

  20. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  21. The total number of local maxima and local minima of the function f...

    Text Solution

    |