Home
Class 12
MATHS
At x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x is (...

At `x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x` is (a) 0 (b) maximum (c) minimum (d) none of these

A

maximum

B

minimum

C

zero

D

neither maximum nor minimum

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

Let f(x)=x^3+3x^2-9x+2 . Then, f(x) has a maximum at x=1 (b) a minimum at x=1 (c) neither a maximum nor a minimum at x=-3 (d) none of these

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

At x = (5 pi)/( 6) , the function f (x) = 2 sin 3 x + 3 cos 3 x is

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

The function f(x)=-x//2+sinx defined on [-pi//3,\ pi//3] is (a) increasing (b) decreasing (c) constant (d) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

The solution of the equation sin^3x+sinxcosx+cos^3x=1 is (n∈N) (a) 2npi (b) (4n+1)pi/2 (c) (2n+1)pi (d) None of these

Let f(x) be a function defined as follows: f(x)=sin(x^2-3x),xlt=0; and 6x+5x^2,x >0 Then at x=0,f(x) (a) has a local maximum (b) has a local minimum (c) is discontinuous (d) none of these

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-JEE Advanced (Archive)
  1. At x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x is (a) 0 (b) maximum (c) minimum (...

    Text Solution

    |

  2. Let f,g : [-1,2] to be continuous functions which are twice different...

    Text Solution

    |

  3. Let f:Rrarr(0,oo)andg:RrarrR be twice differentiable functions such th...

    Text Solution

    |

  4. If f:R is a differentiable fucntion such that f(x) gt 2f(x) for all x...

    Text Solution

    |

  5. The point(s) on the curve y^3+\ 3x^2=12 y where the tangent is ver...

    Text Solution

    |

  6. On the ellipse 4x^2+9y^2=1, the points at which the tangents are paral...

    Text Solution

    |

  7. If the line a x+b y+c=0 is a normal to the curve x y=1, then a >0,b >...

    Text Solution

    |

  8. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |

  9. If f(x)=x^3+bx^2+cx+d and 0<b^2<c, then

    Text Solution

    |

  10. The length of the longest interval in which the function 3sinx-4sin^3x...

    Text Solution

    |

  11. If f(x)=xe^(x(1-x)), then f'(x) is

    Text Solution

    |

  12. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  13. If f(x)=x/(sinx) \ a n d \ g(x)=x/(tanx),w h e r e \ 0ltxlt=1, then in...

    Text Solution

    |

  14. The function f(x)=(log (pi+x))/(log (e+x))," is "

    Text Solution

    |

  15. Let fa n dg be increasing and decreasing functions, respectively, from...

    Text Solution

    |

  16. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  17. Let h(x)=f(x)-(f(x))^2+(f(x))^3 for every real number xdot Then (a) h ...

    Text Solution

    |

  18. Let f(X) be a polynomila of degree four having extreme values at x =1 ...

    Text Solution

    |

  19. The number of points in (-oo,oo), for which x^2-xsinx-cosx=0, is

    Text Solution

    |

  20. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  21. The total number of local maxima and local minima of the function f...

    Text Solution

    |