Home
Class 12
MATHS
The length of the normal to the curve y=...

The length of the normal to the curve `y=a((e^(-x//a)+e^(x//a))/(2))` at any point varies as the

A

Abscissa of the point

B

Ordinate of the point

C

Square of the abscissa of the point

D

Square of the ordinate of the point

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the normal to the curve \( y = a \left( \frac{e^{-\frac{x}{a}} + e^{\frac{x}{a}}}{2} \right) \) at any point, we will follow these steps: ### Step 1: Differentiate the function to find \( \frac{dy}{dx} \) Given the function: \[ y = a \left( \frac{e^{-\frac{x}{a}} + e^{\frac{x}{a}}}{2} \right) \] We can differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = a \cdot \frac{1}{2} \left( \frac{d}{dx}(e^{-\frac{x}{a}}) + \frac{d}{dx}(e^{\frac{x}{a}}) \right) \] Using the chain rule: \[ \frac{d}{dx}(e^{-\frac{x}{a}}) = -\frac{1}{a} e^{-\frac{x}{a}}, \quad \frac{d}{dx}(e^{\frac{x}{a}}) = \frac{1}{a} e^{\frac{x}{a}} \] Thus, \[ \frac{dy}{dx} = a \cdot \frac{1}{2} \left( -\frac{1}{a} e^{-\frac{x}{a}} + \frac{1}{a} e^{\frac{x}{a}} \right) = \frac{1}{2} \left( e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right) \] ### Step 2: Find the slope of the normal The slope of the tangent line at any point is given by \( \frac{dy}{dx} \). Therefore, the slope of the normal line is: \[ \text{slope of normal} = -\frac{1}{\frac{dy}{dx}} = -\frac{2}{e^{\frac{x}{a}} - e^{-\frac{x}{a}}} \] ### Step 3: Length of the normal The length \( L \) of the normal at any point can be expressed as: \[ L = y \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \] Substituting \( y \) and \( \frac{dy}{dx} \): \[ L = a \left( \frac{e^{-\frac{x}{a}} + e^{\frac{x}{a}}}{2} \right) \sqrt{1 + \left( \frac{1}{2} \left( e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right) \right)^2} \] Calculating \( 1 + \left( \frac{1}{2} \left( e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right) \right)^2 \): \[ = 1 + \frac{1}{4} \left( e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right)^2 \] This simplifies to: \[ = 1 + \frac{1}{4} \left( e^{\frac{2x}{a}} - 2 + e^{-\frac{2x}{a}} \right) = \frac{4 + e^{\frac{2x}{a}} - 2 + e^{-\frac{2x}{a}}}{4} = \frac{2 + e^{\frac{2x}{a}} + e^{-\frac{2x}{a}}}{4} \] Thus: \[ L = a \left( \frac{e^{-\frac{x}{a}} + e^{\frac{x}{a}}}{2} \right) \sqrt{\frac{2 + e^{\frac{2x}{a}} + e^{-\frac{2x}{a}}}{4}} = a \left( \frac{e^{-\frac{x}{a}} + e^{\frac{x}{a}}}{2} \right) \cdot \frac{\sqrt{2 + 2 \cosh\left(\frac{2x}{a}\right)}}{2} \] ### Step 4: Final expression for the length of the normal After simplifying, we find that: \[ L = \frac{a}{2} \left( e^{-\frac{x}{a}} + e^{\frac{x}{a}} \right) \sqrt{2 + 2 \cosh\left(\frac{2x}{a}\right)} \] ### Conclusion The length of the normal to the curve at any point varies as \( y^2 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

Draw the curve y=e^(x)

Find the length of sub-tangent to the curve y=e^(x//a)

Plot the curve y=(log)_e(-x)dot

Plot the curve y=(log)_e(-x)dot

The length of normal at any point to the curve, y=c cosh(x/c) is

The equation of the normal to the curve y= e^(-2|x|) at the point where the curve cuts the line x=-(1)/(2), is

The equation of the normal to the curve y=e^(-2|x|) at the point where the curve cuts the line x = 1//2 is

The distance between the origin and the normal to the curve y=e^(2x)+x^(2) at x=0 is

The equation of the normal to the curve y=x^(-x) at the point of its maximum is

The equation of the tangent to the curve y = e^(2x) at (0,1) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -1
  1. about to only mathematics

    Text Solution

    |

  2. Show the condition that the curves a x^2+b y^2=1 and Ax^2+By^2=1 shoul...

    Text Solution

    |

  3. The length of the normal to the curve y=a((e^(-x//a)+e^(x//a))/(2)) at...

    Text Solution

    |

  4. Find the angle of intersection of y=a^xa n dy=b^x

    Text Solution

    |

  5. Find the euation of normal to the curve x=a( cos theta + theta sin th...

    Text Solution

    |

  6. The curve y-e^(xy)+x=0 has a vertical tangent at the point:

    Text Solution

    |

  7. The function x-(log(1+x)/x)(x>0) is increasing in:

    Text Solution

    |

  8. Let f(x) =cos (cos x). Then which one is not correct?

    Text Solution

    |

  9. Let f(x)=x-1/2 log (x^(2)+1). Then f' (x) is :

    Text Solution

    |

  10. The function f(x)=(x^(4)-42x^(2)-80x+32)^(3) is :

    Text Solution

    |

  11. Find the intervals in which f(x)=2\ log\ (x-2)-x^2+4x+1 is increasing ...

    Text Solution

    |

  12. If f(x)=x/(sinx) \ a n d \ g(x)=x/(tanx),w h e r e \ 0ltxlt=1, then in...

    Text Solution

    |

  13. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types: (...

    Text Solution

    |

  14. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types: (...

    Text Solution

    |

  15. if f is an increasing function and g is a decreasing function on an in...

    Text Solution

    |

  16. The interval in which the function x^3 increases less rapidly than 6x^...

    Text Solution

    |

  17. If f(x)=xe^(x(1-x)), then f'(x) is

    Text Solution

    |

  18. Show that f(x) =tan^(-1)(sinx+cosx) is an increasing function in (0,pi...

    Text Solution

    |

  19. If tangents are drawn from the origin to the curve y=sin x , th...

    Text Solution

    |

  20. For all x in (0,1), then

    Text Solution

    |