Home
Class 12
MATHS
The function f(x)=|x^2-2|/|x^2-4| has, ...

The function `f(x)=|x^2-2|/|x^2-4|` has, (a) no point of local maxima (b) no point of local minima (c) exactly one point of local minima (d) exactly one point of local maxima

A

no point of local minima

B

no point of local minima

C

exactly one point of local minima

D

exaclty one point of local maxima

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{|x^2 - 2|}{|x^2 - 4|} \) to determine the points of local maxima and minima. ### Step 1: Identify the points where the function is undefined The function \( f(x) \) is undefined where the denominator is zero. Thus, we need to find the values of \( x \) for which \( |x^2 - 4| = 0 \). \[ x^2 - 4 = 0 \implies x^2 = 4 \implies x = 2 \text{ or } x = -2 \] **Hint:** Check where the denominator becomes zero to identify points of discontinuity. ### Step 2: Analyze the function The function can be rewritten as: \[ f(x) = \frac{|x^2 - 2|}{|x^2 - 4|} = \frac{|(x - \sqrt{2})(x + \sqrt{2})|}{|(x - 2)(x + 2)|} \] This shows that the function has critical points at \( x = \sqrt{2}, -\sqrt{2}, 2, -2 \). However, \( x = 2 \) and \( x = -2 \) are not in the domain of \( f(x) \). **Hint:** Rewrite the function in factored form to identify critical points. ### Step 3: Differentiate the function To find local maxima and minima, we need to differentiate \( f(x) \) using the quotient rule. The derivative is given by: \[ f'(x) = \frac{(g(x) \cdot h'(x) - h(x) \cdot g'(x))}{(h(x))^2} \] where \( g(x) = |x^2 - 2| \) and \( h(x) = |x^2 - 4| \). ### Step 4: Find critical points Set \( f'(x) = 0 \) to find critical points. The critical points occur when the numerator of the derivative is zero. \[ g(x) \cdot h'(x) - h(x) \cdot g'(x) = 0 \] From our earlier analysis, we can find that the only root of this equation is \( x = 0 \). **Hint:** Solve \( f'(x) = 0 \) to find critical points. ### Step 5: Determine the nature of critical points To determine whether \( x = 0 \) is a local maxima or minima, we can analyze the sign of \( f'(x) \) around this point. - For \( x < 0 \): \( f'(x) > 0 \) (function is increasing) - For \( x > 0 \): \( f'(x) < 0 \) (function is decreasing) Since the function changes from increasing to decreasing at \( x = 0 \), we conclude that \( x = 0 \) is a local maximum. **Hint:** Use the first derivative test to determine the nature of the critical points. ### Conclusion The function \( f(x) = \frac{|x^2 - 2|}{|x^2 - 4|} \) has exactly one point of local maxima at \( x = 0 \). Thus, the correct answer is: (d) exactly one point of local maxima.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

For the function f(x)=4/3x^3-8x^2+16 x+5,x=2 is a point of (1)local maxima (2) local minima (3)point of inflexion (4) decreasing/increasing

if lim_(h->0) [f(a-h)/f(a)]=c where f(x) is a continuous function such that f(x)> 0 for all x in R and [.] denotes greatest integer function then which of the following statements is always true ? (A) If x=a is a point of local minima then c in N (B) if x = a is a point of local maxima then c in N (C) If x=a is a pioint of local minima then c in I (D) If x= a is a point of local maximka then c in I

Find all points of local maxima and local minima of the function f given by f(x)=x^3-3x+3 .

Find the points of local maxima or minima for f(x) =" sin "2x -x, x in (0,pi)

Find points of local maxima // minima of f(x) =x^(2) e^(-x) .

Draw graph of f(x) =x|x-2| and hence find points of local maxima // minima.

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sin2x , where 0ltxltpi

Find the points of local maxima or local minima, if any, and local maximum or local minimum values of f(x)=sinx+cosx , where 0

The function f(x) : (x-1)/(x( x^(2) -1)) is discontinuous at (a) exactly one point (b) exactly two points (c) exactly three points (d) no point

Find the points of local maxima and minima of the function f(x)=x^(2)-4x .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -1
  1. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  2. The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum...

    Text Solution

    |

  3. The function f(x)=|x^2-2|/|x^2-4| has, (a) no point of local maxima ...

    Text Solution

    |

  4. Let f(x)={:{(6","xle1),(7-x","xgt1):} 'then for f(x) at x=1 discuss ma...

    Text Solution

    |

  5. If xy =10, then minimum value of 12x^2 + 13y^2 is equal to :

    Text Solution

    |

  6. If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    Text Solution

    |

  7. Let f(x)={:{(|x-2|+a^(2)-9a-9","ifxlt2),(2x-3"," if xge2):} Then, f...

    Text Solution

    |

  8. Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,...

    Text Solution

    |

  9. The third derivative of a function f'''(x) vanishes for all f(0)=1,f'(...

    Text Solution

    |

  10. The least value of alpha in R for which 4ax^2+(1)/(x)ge1, for all xgt ...

    Text Solution

    |

  11. The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi),...

    Text Solution

    |

  12. Let f(x) = Maximum {sin x, cos x} AA x in R. minimum value of f (x) ...

    Text Solution

    |

  13. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  14. Let the function f(x) be defined as below f(x)=sin^(-1) lambda+x^2 whe...

    Text Solution

    |

  15. The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ ...

    Text Solution

    |

  16. Lert f:[a , b]vec be a function such that for c in (a , b),f^(prime)(c...

    Text Solution

    |

  17. The minimum value of 2^(x^2-3)^(3) +27 is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  18. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  19. The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

    Text Solution

    |

  20. The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a...

    Text Solution

    |