Home
Class 12
MATHS
If xy =10, then minimum value of 12x^2 +...

If xy =10, then minimum value of `12x^2 + 13y^2` is equal to :

A

15

B

`40sqrt39`

C

`3sqrt13`

D

`30sqrt13`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( 12x^2 + 13y^2 \) given the constraint \( xy = 10 \), we can follow these steps: ### Step 1: Express \( y \) in terms of \( x \) Given the constraint \( xy = 10 \), we can express \( y \) as: \[ y = \frac{10}{x} \] ### Step 2: Substitute \( y \) in the function Now, substitute \( y \) in the function \( f(x) = 12x^2 + 13y^2 \): \[ f(x) = 12x^2 + 13\left(\frac{10}{x}\right)^2 \] This simplifies to: \[ f(x) = 12x^2 + 13\left(\frac{100}{x^2}\right) = 12x^2 + \frac{1300}{x^2} \] ### Step 3: Differentiate the function To find the minimum value, we need to differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx}\left(12x^2 + \frac{1300}{x^2}\right) \] Using the power rule and the quotient rule, we get: \[ f'(x) = 24x - \frac{2600}{x^3} \] ### Step 4: Set the derivative to zero To find the critical points, set \( f'(x) = 0 \): \[ 24x - \frac{2600}{x^3} = 0 \] Rearranging gives: \[ 24x = \frac{2600}{x^3} \] Multiplying both sides by \( x^3 \) results in: \[ 24x^4 = 2600 \] ### Step 5: Solve for \( x \) Now, solve for \( x \): \[ x^4 = \frac{2600}{24} = \frac{1300}{12} = \frac{325}{3} \] Taking the fourth root gives: \[ x = \left(\frac{325}{3}\right)^{1/4} \] ### Step 6: Find \( y \) Using the value of \( x \), find \( y \): \[ y = \frac{10}{x} = \frac{10}{\left(\frac{325}{3}\right)^{1/4}} = 10 \cdot \left(\frac{3}{325}\right)^{1/4} \] ### Step 7: Substitute \( x \) and \( y \) back into the function Now substitute \( x \) and \( y \) back into the function to find the minimum value: \[ f(x, y) = 12x^2 + 13y^2 \] Calculating \( f(x) \): \[ f\left(\left(\frac{325}{3}\right)^{1/4}, \frac{10}{\left(\frac{325}{3}\right)^{1/4}}\right) = 12\left(\frac{325}{3}\right)^{1/2} + 13\left(\frac{10}{\left(\frac{325}{3}\right)^{1/4}}\right)^2 \] ### Step 8: Simplify to find the minimum value After substituting and simplifying, you will arrive at the minimum value of \( 12x^2 + 13y^2 \). ### Final Answer The minimum value of \( 12x^2 + 13y^2 \) given \( xy = 10 \) is \( 40\sqrt{39} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

If xy=1 , then minimum value of x ^(2) + y^(2) is :

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

Let y=x^2+ x , the minimum value of y is

The minimum value of y=5x^(2)-2x+1 is

If x,y in R and satisfy (x+5)^2+(y-12)^2=14^2 then the minimum value of x^2+y^2 is

Suppose x, y in (-2, 2) and xy=-1 , then the minimum value of a=4/(4-x^2)-9/(9-y^2) is

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)

If x^(2) + 9y^(2) = 1 , then minimum and maximum value of 3x^(2) - 27y^(2) + 24xy respectively

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -1
  1. The function f(x)=|x^2-2|/|x^2-4| has, (a) no point of local maxima ...

    Text Solution

    |

  2. Let f(x)={:{(6","xle1),(7-x","xgt1):} 'then for f(x) at x=1 discuss ma...

    Text Solution

    |

  3. If xy =10, then minimum value of 12x^2 + 13y^2 is equal to :

    Text Solution

    |

  4. If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    Text Solution

    |

  5. Let f(x)={:{(|x-2|+a^(2)-9a-9","ifxlt2),(2x-3"," if xge2):} Then, f...

    Text Solution

    |

  6. Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,...

    Text Solution

    |

  7. The third derivative of a function f'''(x) vanishes for all f(0)=1,f'(...

    Text Solution

    |

  8. The least value of alpha in R for which 4ax^2+(1)/(x)ge1, for all xgt ...

    Text Solution

    |

  9. The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi),...

    Text Solution

    |

  10. Let f(x) = Maximum {sin x, cos x} AA x in R. minimum value of f (x) ...

    Text Solution

    |

  11. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  12. Let the function f(x) be defined as below f(x)=sin^(-1) lambda+x^2 whe...

    Text Solution

    |

  13. The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ ...

    Text Solution

    |

  14. Lert f:[a , b]vec be a function such that for c in (a , b),f^(prime)(c...

    Text Solution

    |

  15. The minimum value of 2^(x^2-3)^(3) +27 is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  16. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  17. The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

    Text Solution

    |

  18. The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a...

    Text Solution

    |

  19. The function y=(a x+b)/((x-1)(x-4)) has turning point at P(2,1)dot The...

    Text Solution

    |

  20. If a,b are positive integers, maximum value of (x-a)^(a) (x-b)^(b) o...

    Text Solution

    |