Home
Class 12
MATHS
Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt...

Let `f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2`, f(x) has:

A

a local minimum

B

a local maximum

C

no extremum

D

no local maximum

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) at the point \( x = \frac{\pi}{2} \) and analyze its properties. The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} x^3 + x^2 - 10x & \text{for } -1 \leq x < 0 \\ \cos x & \text{for } 0 \leq x < \frac{\pi}{2} \\ 1 + \sin x & \text{for } \frac{\pi}{2} \leq x \leq \pi \end{cases} \] ### Step 1: Identify the relevant piece of the function at \( x = \frac{\pi}{2} \) Since \( x = \frac{\pi}{2} \) falls in the interval \( \frac{\pi}{2} \leq x \leq \pi \), we will use the third piece of the function: \[ f(x) = 1 + \sin x \] ### Step 2: Evaluate \( f\left(\frac{\pi}{2}\right) \) Now we need to compute \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = 1 + \sin\left(\frac{\pi}{2}\right) \] Since \( \sin\left(\frac{\pi}{2}\right) = 1 \): \[ f\left(\frac{\pi}{2}\right) = 1 + 1 = 2 \] ### Step 3: Analyze the continuity of \( f(x) \) at \( x = \frac{\pi}{2} \) To determine if \( f(x) \) has any special properties at \( x = \frac{\pi}{2} \), we need to check the left-hand limit and right-hand limit at this point. **Left-hand limit as \( x \to \frac{\pi}{2}^- \)**: Using the second piece of the function \( f(x) = \cos x \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \cos\left(\frac{\pi}{2}\right) = 0 \] **Right-hand limit as \( x \to \frac{\pi}{2}^+ \)**: Using the third piece of the function \( f(x) = 1 + \sin x \): \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = 1 + \sin\left(\frac{\pi}{2}\right) = 2 \] ### Step 4: Conclusion about continuity and differentiability Since the left-hand limit (0) does not equal the right-hand limit (2), the function \( f(x) \) is not continuous at \( x = \frac{\pi}{2} \). Therefore, \( f(x) \) does not have a derivative at this point, and we can conclude that: At \( x = \frac{\pi}{2} \), \( f(x) \) has a jump discontinuity. ### Final Answer At \( x = \frac{\pi}{2} \), \( f(x) \) has a jump discontinuity. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

If 0 le x le pi/2 then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

Let f(x)={{:(,1+x,"if "x lt 0),(,1+[x]+sin x,0 le x lt pi//2),(,3,x ge pi//2):} Statement-1: F is a continuous on R-[1] Statement-2: The greatest integer function is discontinuous at every integer point.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -1
  1. If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    Text Solution

    |

  2. Let f(x)={:{(|x-2|+a^(2)-9a-9","ifxlt2),(2x-3"," if xge2):} Then, f...

    Text Solution

    |

  3. Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,...

    Text Solution

    |

  4. The third derivative of a function f'''(x) vanishes for all f(0)=1,f'(...

    Text Solution

    |

  5. The least value of alpha in R for which 4ax^2+(1)/(x)ge1, for all xgt ...

    Text Solution

    |

  6. The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi),...

    Text Solution

    |

  7. Let f(x) = Maximum {sin x, cos x} AA x in R. minimum value of f (x) ...

    Text Solution

    |

  8. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  9. Let the function f(x) be defined as below f(x)=sin^(-1) lambda+x^2 whe...

    Text Solution

    |

  10. The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ ...

    Text Solution

    |

  11. Lert f:[a , b]vec be a function such that for c in (a , b),f^(prime)(c...

    Text Solution

    |

  12. The minimum value of 2^(x^2-3)^(3) +27 is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  13. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  14. The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

    Text Solution

    |

  15. The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a...

    Text Solution

    |

  16. The function y=(a x+b)/((x-1)(x-4)) has turning point at P(2,1)dot The...

    Text Solution

    |

  17. If a,b are positive integers, maximum value of (x-a)^(a) (x-b)^(b) o...

    Text Solution

    |

  18. Given f(x) = tan(sqrt(pi^2/16 - x^2)) and A = R - [0,1]

    Text Solution

    |

  19. If the only point of inflection of the function f(x)-(x-a)^m(x-b)^n , ...

    Text Solution

    |

  20. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=p and x=q ...

    Text Solution

    |