Home
Class 12
MATHS
Let f(x) = Maximum {sin x, cos x} AA x ...

Let `f(x) =` Maximum `{sin x, cos x} AA x in R`. minimum value of `f (x)` is

A

`(1-sqrt2)`

B

`-1`

C

`(1-1/sqrt2)`

D

`(-1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \max(\sin x, \cos x) \) for \( x \in \mathbb{R} \), we will analyze the behavior of the sine and cosine functions. ### Step-by-Step Solution: 1. **Understand the Functions**: The functions \( \sin x \) and \( \cos x \) oscillate between -1 and 1. The maximum function will take the greater value between \( \sin x \) and \( \cos x \) at any point \( x \). 2. **Find Points of Intersection**: To find where \( \sin x = \cos x \), we set: \[ \sin x = \cos x \] This occurs when: \[ \tan x = 1 \quad \Rightarrow \quad x = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] 3. **Evaluate the Function in Intervals**: - For \( x \) in the interval \( \left[0, \frac{\pi}{4}\right] \): - Here, \( \sin x \leq \cos x \), so \( f(x) = \cos x \). - For \( x \) in the interval \( \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \): - Here, \( \sin x \geq \cos x \), so \( f(x) = \sin x \). - For \( x \) in the interval \( \left[\frac{5\pi}{4}, 2\pi\right] \): - Here, \( \sin x \leq \cos x \), so \( f(x) = \cos x \). 4. **Evaluate the Function at Critical Points**: - At \( x = 0 \): \( f(0) = \max(\sin 0, \cos 0) = \max(0, 1) = 1 \) - At \( x = \frac{\pi}{4} \): \( f\left(\frac{\pi}{4}\right) = \max\left(\sin\frac{\pi}{4}, \cos\frac{\pi}{4}\right) = \max\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \) - At \( x = \frac{5\pi}{4} \): \( f\left(\frac{5\pi}{4}\right) = \max\left(\sin\frac{5\pi}{4}, \cos\frac{5\pi}{4}\right) = \max\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}} \) - At \( x = 2\pi \): \( f(2\pi) = \max(\sin 2\pi, \cos 2\pi) = \max(0, 1) = 1 \) 5. **Determine the Minimum Value**: From the evaluations, we see that the minimum value occurs at \( x = \frac{5\pi}{4} \): \[ \text{Minimum value of } f(x) = -\frac{1}{\sqrt{2}} \] ### Conclusion: The minimum value of the function \( f(x) = \max(\sin x, \cos x) \) is \( -\frac{1}{\sqrt{2}} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

For any real number b, let f (b) denotes the maximum of | sin x+(2)/(3+sin x)+b|AAxx x in R. Then the minimum value of f (b)AA b in R is:

If f(x)=2(7cos x +24 sin x) (7 sinx -24 cos x) , for even x in R then maximum value of f(x) is __________

Let f (x) = [x] and g (x ) =|x| , AA x in R then value of gof (( - 5 ) /(3)) + fog (( - 5)/(3)) is equal to: ( where f _ 0 g (x) = f (g (x))) .

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

Let f (x) = ax+cos 2x +sin x+ cos x is defined for AA x in R and a in R and is strictely increasing function. If the range of a is [(m)/(n),oo), then find the minimum vlaue of (m- n).

Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R. The minimum value of f(x) is

Let f(x) =x +(1)/(x). find local maximum and local minimum value of f(x) . Can you explain this discrepancy of locally minimum value being greater than locally maximum value.

Let y = f (x) such that xy = x+y +1, x in R-{1} and g (x) =x f (x) The minimum value of g (x) is:

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

Let f(x)=2-|x-3|,1<= x <= 5 and for rest of the values f(x) can be obtained by using the relation f(5x)=alpha f(x) AA x in R The maximum value of f(x) in [5^4,5^5] for alpha=2 is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -1
  1. The least value of alpha in R for which 4ax^2+(1)/(x)ge1, for all xgt ...

    Text Solution

    |

  2. The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi),...

    Text Solution

    |

  3. Let f(x) = Maximum {sin x, cos x} AA x in R. minimum value of f (x) ...

    Text Solution

    |

  4. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  5. Let the function f(x) be defined as below f(x)=sin^(-1) lambda+x^2 whe...

    Text Solution

    |

  6. The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ ...

    Text Solution

    |

  7. Lert f:[a , b]vec be a function such that for c in (a , b),f^(prime)(c...

    Text Solution

    |

  8. The minimum value of 2^(x^2-3)^(3) +27 is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  9. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  10. The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

    Text Solution

    |

  11. The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a...

    Text Solution

    |

  12. The function y=(a x+b)/((x-1)(x-4)) has turning point at P(2,1)dot The...

    Text Solution

    |

  13. If a,b are positive integers, maximum value of (x-a)^(a) (x-b)^(b) o...

    Text Solution

    |

  14. Given f(x) = tan(sqrt(pi^2/16 - x^2)) and A = R - [0,1]

    Text Solution

    |

  15. If the only point of inflection of the function f(x)-(x-a)^m(x-b)^n , ...

    Text Solution

    |

  16. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=p and x=q ...

    Text Solution

    |

  17. Verify Rolles theorem for the function f(x)=(x-a)^m(x-b)^n on the inte...

    Text Solution

    |

  18. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  19. Rolle’s theorem can not applicable for :

    Text Solution

    |

  20. The constant c of Lagrange’s theorem for f(x)=(x)/(x-1)" in "[2,4]" ...

    Text Solution

    |