Home
Class 12
MATHS
f(x)=int0^x(e^t-1)(t-1)(sint-cost)sin t ...

`f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi),` then `f(x)` is decreasing in :

A

`(-pi/2,0) cup (pi/4,1) cup (pi,pi/4)`

B

`(-pi/2,pi/4) cup (1, pi) cup ((5pi)/(4), 2pi)`

C

`(pi/4,1) cup (pi,(5pi)/(4))`

D

`(0,pi/4) cup (1, pi) cup ((5pi)/(4), 2pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) \) is decreasing, we need to analyze the derivative \( f'(x) \). The function is given by: \[ f(x) = \int_0^x (e^t - 1)(t - 1)(\sin t - \cos t) \sin t \, dt \] ### Step 1: Differentiate \( f(x) \) Using the Fundamental Theorem of Calculus, we differentiate \( f(x) \): \[ f'(x) = (e^x - 1)(x - 1)(\sin x - \cos x) \sin x \] ### Step 2: Analyze the derivative \( f'(x) \) To find where \( f(x) \) is decreasing, we need to determine where \( f'(x) < 0 \). This involves analyzing the sign of each factor in \( f'(x) \): 1. **Factor 1: \( e^x - 1 \)** - \( e^x - 1 = 0 \) when \( x = 0 \) - \( e^x - 1 > 0 \) for \( x > 0 \) - \( e^x - 1 < 0 \) for \( x < 0 \) 2. **Factor 2: \( x - 1 \)** - \( x - 1 = 0 \) when \( x = 1 \) - \( x - 1 > 0 \) for \( x > 1 \) - \( x - 1 < 0 \) for \( x < 1 \) 3. **Factor 3: \( \sin x - \cos x \)** - \( \sin x - \cos x = 0 \) when \( \tan x = 1 \) - This occurs at \( x = \frac{\pi}{4} \) and \( x = \frac{5\pi}{4} \) within the interval \( (-\frac{\pi}{2}, 2\pi) \). 4. **Factor 4: \( \sin x \)** - \( \sin x = 0 \) at \( x = 0, \pi, 2\pi \) - \( \sin x > 0 \) in the intervals \( (0, \pi) \) and \( (2\pi, 2\pi) \) - \( \sin x < 0 \) in the intervals \( (-\frac{\pi}{2}, 0) \) and \( (\pi, 2\pi) \) ### Step 3: Determine intervals for \( f'(x) < 0 \) Now we will analyze the sign of \( f'(x) \) in the intervals defined by the critical points \( x = 0, 1, \frac{\pi}{4}, \pi, \frac{5\pi}{4}, 2\pi \): 1. **Interval \( (-\frac{\pi}{2}, 0) \)** - \( e^x - 1 < 0 \) - \( x - 1 < 0 \) - \( \sin x - \cos x < 0 \) - \( \sin x < 0 \) - Thus, \( f'(x) > 0 \) 2. **Interval \( (0, \frac{\pi}{4}) \)** - \( e^x - 1 > 0 \) - \( x - 1 < 0 \) - \( \sin x - \cos x < 0 \) - \( \sin x > 0 \) - Thus, \( f'(x) < 0 \) 3. **Interval \( (\frac{\pi}{4}, 1) \)** - \( e^x - 1 > 0 \) - \( x - 1 < 0 \) - \( \sin x - \cos x > 0 \) - \( \sin x > 0 \) - Thus, \( f'(x) < 0 \) 4. **Interval \( (1, \pi) \)** - \( e^x - 1 > 0 \) - \( x - 1 > 0 \) - \( \sin x - \cos x < 0 \) - \( \sin x > 0 \) - Thus, \( f'(x) < 0 \) 5. **Interval \( (\pi, \frac{5\pi}{4}) \)** - \( e^x - 1 > 0 \) - \( x - 1 > 0 \) - \( \sin x - \cos x < 0 \) - \( \sin x < 0 \) - Thus, \( f'(x) < 0 \) 6. **Interval \( (\frac{5\pi}{4}, 2\pi) \)** - \( e^x - 1 > 0 \) - \( x - 1 > 0 \) - \( \sin x - \cos x < 0 \) - \( \sin x < 0 \) - Thus, \( f'(x) < 0 \) ### Conclusion The function \( f(x) \) is decreasing in the intervals: - \( (0, \frac{\pi}{4}) \) - \( (\frac{\pi}{4}, 1) \) - \( (1, \pi) \) - \( (\pi, \frac{5\pi}{4}) \) - \( (\frac{5\pi}{4}, 2\pi) \)
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt , where x in (0,2pi) , then f(x) strictly increases in the interval

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Let f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt , then f(2pi)=

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

f(x)=int_1^x(tan^(-1)(t))/t dt \ AAx in R^+, then find the value of f(e^2)-f(1/(e^2))

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) none of these

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -2
  1. Parabola y^2=4a(x-c1) and x^2=4a(y-c2) , where c1a n dc2 are variable,...

    Text Solution

    |

  2. If 9-x^2>|x-a | has atleast one negative solution, where a in R the...

    Text Solution

    |

  3. f(x)=int0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi), the...

    Text Solution

    |

  4. l1 and l2 are the side lengths of two variable squares S1, and S2, re...

    Text Solution

    |

  5. If f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) then f(x) increase in (0,oo) ...

    Text Solution

    |

  6. Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rd...

    Text Solution

    |

  7. If are positive integers, maximum value of x^(m) (a-x)^(n)" in (0,a)...

    Text Solution

    |

  8. The maximum value of (sin x)^((sin x)) is

    Text Solution

    |

  9. A helicopter flying along the path y=7+x^((3)/(2)), A soldier standint...

    Text Solution

    |

  10. Find the value of a in order that f(x)=sqrt(3)sinx-cosx-2a x+b decreas...

    Text Solution

    |

  11. The largest term in the sequence an=(n^2)/(n^3+200) is given by (529)/...

    Text Solution

    |

  12. The least value of f (x) =x^3/3-abx occurs at x=

    Text Solution

    |

  13. For the curve defined as y=cosec^(-1)((1+x^2)/(2x))+sec^(-1)((1+x^2)/(...

    Text Solution

    |

  14. If f(x)=max{x^(2)-4,|x-2|,|x-4|} then:

    Text Solution

    |

  15. Given that f (x) is a non-constant linear function. Then the curves :

    Text Solution

    |

  16. If a curve with equation of the form y=ax^(4)+bx^(3)+cx+d has zero gra...

    Text Solution

    |

  17. If the area of the triangle included between the axes and any tangent ...

    Text Solution

    |

  18. Show that the maximum value of (1/x)^x is e^(1//e) .

    Text Solution

    |

  19. Consider, f (x) is a function such that f(1)=1, f(2)=4 and f(3)=9 ...

    Text Solution

    |

  20. Statement 1 : f(x)=log(e+x) (pi+x) is strictly increasing for all . ...

    Text Solution

    |