Home
Class 12
MATHS
The maximum value of (sin x)^((sin x)) ...

The maximum value of `(sin x)^((sin x))` is

A

`7//3`

B

7

C

`pi//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( y = (\sin x)^{\sin x} \), we can follow these steps: ### Step 1: Take the logarithm of the function We start by taking the natural logarithm of both sides: \[ \log y = \sin x \cdot \log(\sin x) \] ### Step 2: Differentiate both sides Next, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \log(\sin x) + \sin x \cdot \frac{\cos x}{\sin x} \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \log(\sin x) + \cos x \] Factoring out \( \cos x \): \[ \frac{1}{y} \frac{dy}{dx} = \cos x (1 + \log(\sin x)) \] ### Step 3: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ \cos x (1 + \log(\sin x)) = 0 \] This gives us two cases: 1. \( \cos x = 0 \) 2. \( 1 + \log(\sin x) = 0 \) ### Step 4: Solve for critical points **Case 1:** \( \cos x = 0 \) leads to: \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] **Case 2:** \( 1 + \log(\sin x) = 0 \) leads to: \[ \log(\sin x) = -1 \implies \sin x = e^{-1} \] ### Step 5: Evaluate the function at critical points Now we evaluate \( y \) at the critical points. **At \( x = \frac{\pi}{2} \):** \[ y = (\sin(\frac{\pi}{2}))^{\sin(\frac{\pi}{2})} = 1^1 = 1 \] **At \( \sin x = e^{-1} \):** \[ y = (e^{-1})^{e^{-1}} = e^{-1/e} \] ### Step 6: Compare the values Now we compare the two values: 1. \( 1 \) 2. \( e^{-1/e} \) Since \( e^{-1/e} < 1 \) (as \( e^{-1/e} \) is a positive number less than 1), the maximum value occurs at \( x = \frac{\pi}{2} \). ### Conclusion The maximum value of \( (\sin x)^{\sin x} \) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The maximum value of y=1/(sin^6x+cos^6x) is ______

Knowledge Check

  • The maximum value of 6 sin x cos x is

    A
    `1/3`
    B
    `1`
    C
    2.6
    D
    3
  • Similar Questions

    Explore conceptually related problems

    The maximum value of y=1/(sin^6x+cos^6x) is ______

    The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

    The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

    The maximum value of sin x cos x is ……..

    The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

    The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a lt pi//2) is :

    Find the maximum value of the function f(x) =sin x + cos x .