Home
Class 12
MATHS
Let f(x)= cos x sin 2x then choose th...

Let `f(x)= cos x sin 2x ` then choose the best option :

A

`min underset(x in (-pi,pi))(f(x)) gt -7/9`

B

`min underset(x in (-pi,pi))(f(x)) gt -9/7`

C

`min underset(x in (-pi,pi))(f(x)) gt -1/9`

D

`min underset(x in (-pi,pi))(f(x)) gt -2/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \cos x \sin 2x \) and find its minimum value over the interval \( x \in [-\pi, \pi] \). ### Step 1: Rewrite the function We can express \( \sin 2x \) using the double angle identity: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite \( f(x) \): \[ f(x) = \cos x \cdot (2 \sin x \cos x) = 2 \sin x \cos^2 x \] ### Step 2: Substitute \( t = \sin x \) Let \( t = \sin x \). The range of \( t \) when \( x \) varies from \( -\pi \) to \( \pi \) is \( t \in [-1, 1] \). We can express \( \cos^2 x \) in terms of \( t \): \[ \cos^2 x = 1 - \sin^2 x = 1 - t^2 \] Therefore, we can rewrite \( f(x) \) as: \[ f(x) = 2t(1 - t^2) = 2t - 2t^3 \] ### Step 3: Define the new function \( g(t) \) Let \( g(t) = 2t - 2t^3 \). We will find the minimum of \( g(t) \) over the interval \( t \in [-1, 1] \). ### Step 4: Differentiate \( g(t) \) To find the critical points, we differentiate \( g(t) \): \[ g'(t) = 2 - 6t^2 \] Setting the derivative equal to zero to find critical points: \[ 2 - 6t^2 = 0 \implies 6t^2 = 2 \implies t^2 = \frac{1}{3} \implies t = \pm \frac{1}{\sqrt{3}} \] ### Step 5: Evaluate the second derivative To determine whether these critical points are minima or maxima, we compute the second derivative: \[ g''(t) = -12t \] - At \( t = \frac{1}{\sqrt{3}} \): \[ g''\left(\frac{1}{\sqrt{3}}\right) = -12 \cdot \frac{1}{\sqrt{3}} < 0 \quad \text{(local maximum)} \] - At \( t = -\frac{1}{\sqrt{3}} \): \[ g''\left(-\frac{1}{\sqrt{3}}\right) = 12 \cdot \frac{1}{\sqrt{3}} > 0 \quad \text{(local minimum)} \] ### Step 6: Evaluate \( g(t) \) at critical points and endpoints Now we evaluate \( g(t) \) at the critical points and the endpoints \( t = -1 \) and \( t = 1 \): - At \( t = -1 \): \[ g(-1) = 2(-1) - 2(-1)^3 = -2 + 2 = 0 \] - At \( t = 1 \): \[ g(1) = 2(1) - 2(1)^3 = 2 - 2 = 0 \] - At \( t = \frac{1}{\sqrt{3}} \): \[ g\left(\frac{1}{\sqrt{3}}\right) = 2\left(\frac{1}{\sqrt{3}}\right) - 2\left(\frac{1}{\sqrt{3}}\right)^3 = \frac{2}{\sqrt{3}} - 2\left(\frac{1}{3\sqrt{3}}\right) = \frac{2}{\sqrt{3}} - \frac{2}{3\sqrt{3}} = \frac{6 - 2}{3\sqrt{3}} = \frac{4}{3\sqrt{3}} \] ### Step 7: Compare values Now we compare: - \( g(-1) = 0 \) - \( g(1) = 0 \) - \( g\left(-\frac{1}{\sqrt{3}}\right) \) (local minimum) To find \( g\left(-\frac{1}{\sqrt{3}}\right) \): \[ g\left(-\frac{1}{\sqrt{3}}\right) = 2\left(-\frac{1}{\sqrt{3}}\right) - 2\left(-\frac{1}{\sqrt{3}}\right)^3 = -\frac{2}{\sqrt{3}} + \frac{2}{3\sqrt{3}} = -\frac{6 - 2}{3\sqrt{3}} = -\frac{4}{3\sqrt{3}} \] ### Conclusion The minimum value of \( f(x) \) occurs at \( t = -\frac{1}{\sqrt{3}} \) and is: \[ \text{Minimum of } f(x) = -\frac{4}{3\sqrt{3}} \approx -0.77 \] This value is greater than \( -\frac{7}{9} \), confirming that \( f(x) > -\frac{7}{9} \) for \( x \in [-\pi, \pi] \). ### Final Answer The best option is \( \text{Option E} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={cos^2x; x e Q -cos^2x; xQ ', then set of points, where f(x) is continuous, is'

Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the following is(are) correct ?

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

Let |f (x)| le sin ^(2) x, AA x in R, then

Let f (x) = ax+cos 2x +sin x+ cos x is defined for AA x in R and a in R and is strictely increasing function. If the range of a is [(m)/(n),oo), then find the minimum vlaue of (m- n).

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

Let f: R rArr R be defined as f(x)= x^(4) . Choose the correct option

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -2
  1. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  2. A rectangle has one side on the positive y-axis and one side on the po...

    Text Solution

    |

  3. Let f(x)= cos x sin 2x then choose the best option :

    Text Solution

    |

  4. Let f(x)=a x^3+b x^2+c x+d , a!=0 If x1 and x2 are the real and disti...

    Text Solution

    |

  5. If A+B=pi/3 where A, B > 0, then minimum value of sec A + sec B is equ...

    Text Solution

    |

  6. Let f^(prime)(x)&gt;0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is ...

    Text Solution

    |

  7. Consider the function f(x)=xcosx-sinxdot Then identify the statement w...

    Text Solution

    |

  8. if f(x) is a differentiable function wherever it is continuous and f^(...

    Text Solution

    |

  9. If f(0)=f(1)=f(2)=0 and function f(x) is twice differentiable in (0, 2...

    Text Solution

    |

  10. Suppose that f is differentiable for all x and that f^(prime)(x)lt=2 f...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx, then f is

    Text Solution

    |

  13. The function f(x)=(log(pi+x))/(log(e+x))s is

    Text Solution

    |

  14. For what values of a , the function f(x)={((sqrt(a+4))/(1-a))x^5-3x+"l...

    Text Solution

    |

  15. If the function g:(-oo,oo)rarr(-(pi)/(2),(pi)/(2)) is given by g(u)=...

    Text Solution

    |

  16. If f(x) =x^(3)+bx^(2)+cx+d and 0lt b^(2)ltc then in (-oo,oo)

    Text Solution

    |

  17. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  18. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  19. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  20. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |