Home
Class 12
MATHS
f: (0,oo) to (-pi/2,pi/2)" be defined as...

`f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x)`.
If `x_(1),x_(2) and x_(3)` are the points at which g(x) =[f (x)] is discontinuous (where, [.] denotes the greatest integer function), then `(x_(1)+x_(2)+x_(3))" is :"`

A

2

B

3

C

greater than 3

D

belong to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \tan^{-1}(\log_e x) \) and determine the points where the greatest integer function \( g(x) = [f(x)] \) is discontinuous. ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = \tan^{-1}(\log_e x) \) is defined for \( x > 0 \). The range of \( \log_e x \) is \( (-\infty, \infty) \), and the range of \( \tan^{-1}(y) \) for \( y \in (-\infty, \infty) \) is \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). 2. **Finding the Discontinuities**: The greatest integer function \( g(x) = [f(x)] \) is discontinuous at points where \( f(x) \) takes integer values. We need to find \( x \) such that: \[ f(x) = n \quad \text{for integers } n \] This translates to: \[ \tan^{-1}(\log_e x) = n \] which implies: \[ \log_e x = \tan(n) \] Hence: \[ x = e^{\tan(n)} \] 3. **Identifying Relevant Integers**: Since \( f(x) \) ranges from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), the integers \( n \) that fall within this range are \( -1, 0, 1 \). 4. **Calculating Points**: - For \( n = -1 \): \[ x_1 = e^{\tan(-1)} = e^{-\tan(1)} \] - For \( n = 0 \): \[ x_2 = e^{\tan(0)} = e^0 = 1 \] - For \( n = 1 \): \[ x_3 = e^{\tan(1)} \] 5. **Summing the Points**: We need to find \( x_1 + x_2 + x_3 \): \[ x_1 + x_2 + x_3 = e^{-\tan(1)} + 1 + e^{\tan(1)} \] 6. **Simplifying the Expression**: Using the property of exponentials: \[ e^{-\tan(1)} + e^{\tan(1)} = 2 \cosh(\tan(1)) \] Therefore: \[ x_1 + x_2 + x_3 = 2 \cosh(\tan(1)) + 1 \] ### Final Answer: The sum \( (x_1 + x_2 + x_3) \) is \( 2 \cosh(\tan(1)) + 1 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The graph of y = f (x) is best represented by

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -2
  1. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  2. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  3. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  4. Given a function f:[0,4]toR is differentiable ,then prove that for som...

    Text Solution

    |

  5. With the help of Lagrange's formula, prove that (a-b)/(a) le log (a/b)...

    Text Solution

    |

  6. The function f(x)=int(0)^(x)sqrt(1-t^(4)) dt is such that

    Text Solution

    |

  7. The function (sin(x+a))/(sin(x+b)) has no maxima or minima if

    Text Solution

    |

  8. The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^...

    Text Solution

    |

  9. If f(x) is a cubic polynomial which has local maximum at x=-1,If f(2...

    Text Solution

    |

  10. If f(x) is a polynomial of degree 4 having extremum at x=1,2 and lim(x...

    Text Solution

    |

  11. The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the s...

    Text Solution

    |

  12. If the function f(x)=x^(4)+bx^(2)+8x+1 has a horizontal tangent and a...

    Text Solution

    |

  13. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  14. The equation x^3-3x+[a]=0, where [*] denotes the greatest integer func...

    Text Solution

    |

  15. If the function f:[0,4]vecR is differentiable, the show that for a , b...

    Text Solution

    |

  16. For a twice differentiable function f(x),g(x) is defined as g(x)=f^(pr...

    Text Solution

    |

  17. A function y=f(x) has a second-order derivative f''(x)=6(x-1)dot It it...

    Text Solution

    |

  18. Function f(x), g(x) are defined on [-1, 3] and f''(x) > 0, g''(x) > 0 ...

    Text Solution

    |

  19. If a << b << c << d and x in R then the least value of the function,...

    Text Solution

    |

  20. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |