Home
Class 12
MATHS
The maximum value of the function f(x)=...

The maximum value of the function `f(x)=3x^(3)-18x^(2)+27x-40` on the set `S={x in R: x^(2)+30 le 11x}` is:

A

`-122`

B

`-222`

C

`222`

D

`122`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = 3x^3 - 18x^2 + 27x - 40 \) on the set \( S = \{ x \in \mathbb{R} : x^2 + 30 \leq 11x \} \), we will follow these steps: ### Step 1: Determine the set \( S \) We start with the inequality: \[ x^2 + 30 \leq 11x \] Rearranging gives: \[ x^2 - 11x + 30 \leq 0 \] ### Step 2: Factor the quadratic Next, we factor the quadratic expression: \[ x^2 - 11x + 30 = (x - 5)(x - 6) \leq 0 \] ### Step 3: Find the roots The roots of the equation \( (x - 5)(x - 6) = 0 \) are \( x = 5 \) and \( x = 6 \). ### Step 4: Analyze the sign of the quadratic We analyze the sign of \( (x - 5)(x - 6) \) on the number line: - For \( x < 5 \): The expression is positive. - For \( 5 \leq x \leq 6 \): The expression is negative or zero. - For \( x > 6 \): The expression is positive. Thus, the set \( S \) is: \[ S = [5, 6] \] ### Step 5: Differentiate the function \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = 9x^2 - 36x + 27 \] ### Step 6: Factor the derivative We can factor \( f'(x) \): \[ f'(x) = 9(x^2 - 4x + 3) = 9(x - 1)(x - 3) \] ### Step 7: Find critical points The critical points are \( x = 1 \) and \( x = 3 \). We need to check the behavior of \( f'(x) \) in the intervals defined by these points. ### Step 8: Analyze the intervals - For \( x < 1 \): \( f'(x) > 0 \) (increasing) - For \( 1 < x < 3 \): \( f'(x) < 0 \) (decreasing) - For \( x > 3 \): \( f'(x) > 0 \) (increasing) ### Step 9: Determine maximum in the interval \( S \) Since \( S = [5, 6] \) and \( f'(x) \) is increasing in this interval, the maximum value occurs at the endpoint \( x = 6 \). ### Step 10: Calculate \( f(6) \) Now we calculate \( f(6) \): \[ f(6) = 3(6^3) - 18(6^2) + 27(6) - 40 \] Calculating each term: \[ = 3(216) - 18(36) + 162 - 40 \] \[ = 648 - 648 + 162 - 40 \] \[ = 162 - 40 = 122 \] ### Conclusion The maximum value of the function \( f(x) \) on the set \( S \) is: \[ \boxed{122} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -1|102 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^3-15 x^2+36 x-48 on the set A={x|x^ 2+20lt=9x} is______.

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2+27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2-27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is

Find the maxima and minimum value of the function y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60 .

Show that the function f(x) = 4x^3-18x^2+ 27x – 7 is always increasing on R

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

If 2 is a zero of the function f(x)=6x^(3)-11x^(2)-3x+2 , what are the other zeroes ?

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-Level -2
  1. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  2. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  3. f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log(e)x). ...

    Text Solution

    |

  4. Given a function f:[0,4]toR is differentiable ,then prove that for som...

    Text Solution

    |

  5. With the help of Lagrange's formula, prove that (a-b)/(a) le log (a/b)...

    Text Solution

    |

  6. The function f(x)=int(0)^(x)sqrt(1-t^(4)) dt is such that

    Text Solution

    |

  7. The function (sin(x+a))/(sin(x+b)) has no maxima or minima if

    Text Solution

    |

  8. The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^...

    Text Solution

    |

  9. If f(x) is a cubic polynomial which has local maximum at x=-1,If f(2...

    Text Solution

    |

  10. If f(x) is a polynomial of degree 4 having extremum at x=1,2 and lim(x...

    Text Solution

    |

  11. The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the s...

    Text Solution

    |

  12. If the function f(x)=x^(4)+bx^(2)+8x+1 has a horizontal tangent and a...

    Text Solution

    |

  13. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  14. The equation x^3-3x+[a]=0, where [*] denotes the greatest integer func...

    Text Solution

    |

  15. If the function f:[0,4]vecR is differentiable, the show that for a , b...

    Text Solution

    |

  16. For a twice differentiable function f(x),g(x) is defined as g(x)=f^(pr...

    Text Solution

    |

  17. A function y=f(x) has a second-order derivative f''(x)=6(x-1)dot It it...

    Text Solution

    |

  18. Function f(x), g(x) are defined on [-1, 3] and f''(x) > 0, g''(x) > 0 ...

    Text Solution

    |

  19. If a << b << c << d and x in R then the least value of the function,...

    Text Solution

    |

  20. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |